Research article

Periodic measures for a neural field lattice model with state dependent superlinear noise

  • Received: 17 February 2024 Revised: 31 May 2024 Accepted: 04 June 2024 Published: 20 June 2024
  • The primary focus of this paper lies in exploring the limiting dynamics of a neural field lattice model with state dependent superlinear noise. First, we established the well-posedness of solutions to these stochastic systems and subsequently proved the existence of periodic measures for the system in the space of square-summable sequences using Krylov-Bogolyubov's method. The cutoff techniques of uniform estimates on tails of solutions was employed to establish the tightness of a family of probability distributions for the system's solutions.

    Citation: Xintao Li, Rongrui Lin, Lianbing She. Periodic measures for a neural field lattice model with state dependent superlinear noise[J]. Electronic Research Archive, 2024, 32(6): 4011-4024. doi: 10.3934/era.2024180

    Related Papers:

  • The primary focus of this paper lies in exploring the limiting dynamics of a neural field lattice model with state dependent superlinear noise. First, we established the well-posedness of solutions to these stochastic systems and subsequently proved the existence of periodic measures for the system in the space of square-summable sequences using Krylov-Bogolyubov's method. The cutoff techniques of uniform estimates on tails of solutions was employed to establish the tightness of a family of probability distributions for the system's solutions.



    加载中


    [1] S. N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differ. Equations, 149 (1998), 248–291. https://doi.org/10.1006/jdeq.1998.3478 doi: 10.1006/jdeq.1998.3478
    [2] C. E. Elmer, E. S. Van Vleck, Analysis and computation of traveling wave solutions of bistable differential-difference equations, Nonlinearity, 12 (1999), 771–798. https://doi.org/10.1088/0951-7715/12/4/303 doi: 10.1088/0951-7715/12/4/303
    [3] S. N. Chow, W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764–1781. https://doi.org/10.1137/S0036139994261757 doi: 10.1137/S0036139994261757
    [4] S. N. Chow, J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems Ⅰ, IEEE Trans. Circuits Syst., 42 (1995), 746–751. https://doi.org/10.1109/81.473583 doi: 10.1109/81.473583
    [5] Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1092–1115. https://doi.org/10.3934/dcdsb.2022113 doi: 10.3934/dcdsb.2022113
    [6] A. Gu, Weak pullback mean random attractors for stochastic evolution equations and applications, Stoch. Dyn., 22 (2022), 2240001. https://doi.org/10.1142/S0219493722400019 doi: 10.1142/S0219493722400019
    [7] R. Liang, P. Chen, Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 4993–5011. https://doi.org/10.3934/dcdsb.2023050 doi: 10.3934/dcdsb.2023050
    [8] Y. Li, H. Liu, C. W. Lo, On inverse problems in predator-prey models, J. Differ. Equations, 397 (2024), 349–376. https://doi.org/10.1016/j.jde.2024.04.009 doi: 10.1016/j.jde.2024.04.009
    [9] W. Yin, B. Zhang, P. Meng, L. Zhou, D. Qi, A neural network method for inversion of turbulence strength, J. Nonlinear Math. Phys., 31 (2024), 22. https://doi.org/10.1007/s44198-024-00186-0 doi: 10.1007/s44198-024-00186-0
    [10] R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
    [11] Z. Chen, B. Wang, Asymptotic behavior of stochastic complex lattice systems driven by superlinear noise, J. Theor. Probab., 36 (2023), 1487–1519. https://doi.org/10.1007/s10959-022-01206-9 doi: 10.1007/s10959-022-01206-9
    [12] D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equations, 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
    [13] P. W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcation Chaos, 11 (2001), 143–153. https://doi.org/10.1142/S0218127401002031 doi: 10.1142/S0218127401002031
    [14] G. Faye, Traveling fronts for lattice neural field equations, Phys. D, 378 (2018), 20–32. https://doi.org/10.1016/j.physd.2018.04.004 doi: 10.1016/j.physd.2018.04.004
    [15] X. Han, P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, J. Differ. Equations, 268 (2020), 5283–5300. https://doi.org/10.1016/j.jde.2019.11.010 doi: 10.1016/j.jde.2019.11.010
    [16] X. Han, P. E. Kloeden, B. Usman, Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809–824. https://doi.org/10.3934/cpaa.2019039 doi: 10.3934/cpaa.2019039
    [17] X. Wang, P. E. Kloeden, X. Han, Attractors of Hopfield-type lattice models with increasing neuronal input, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 799–813. https://doi.org/10.3934/dcdsb.2019268 doi: 10.3934/dcdsb.2019268
    [18] X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 43. https://doi.org/ 10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
    [19] T. Caraballo, Z. Chen, L. Li, Convergence and approximation of invariant measures for neural field lattice models under noise perturbation, SIAM J. Appl. Dyn. Syst., 23 (2024), 358–382. https://doi.org/10.1137/23M157137X doi: 10.1137/23M157137X
    [20] P. E. Kloeden, T. Lorenz, Mean-quare random dynamical systems, J. Differ. Equations, 253 (2012), 1422–1438. https://doi.org/10.1016/j.jde.2012.05.016 doi: 10.1016/j.jde.2012.05.016
    [21] B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spacs, J. Dyn. Differ. Equations, 31 (2019), 2177–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
    [22] X. Li, Limiting dynamics of stochastic complex Ginzburg-Landau lattice systems with long-range interactions in weighted space, J. Math. Phys., 65 (2024), 022703. https://doi.org/10.1063/5.0168869 doi: 10.1063/5.0168869
    [23] Y. Lin, D. Li, Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 7561–7590. https://doi.org/ 10.3934/dcdsb.2022054 doi: 10.3934/dcdsb.2022054
    [24] R. Wang, B. Wang, Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise, Stoch. Anal. Appl., 39 (2021), 667–696. https://doi.org/10.1080/07362994.2020.1828917 doi: 10.1080/07362994.2020.1828917
    [25] R. Wang, T. Caraballo, N. H. Tuan, Asymptotic stability of evolution systems of probability measures for nonautonomous stochastic systems: Theoretical results and applications, P. Am. Math. Soc., 151 (2023), 2449–2458. https://doi.org/10.1090/proc/16359 doi: 10.1090/proc/16359
    [26] D. Li, B. Wang, X. Wang, Periodic measures of stochastic delay lattice systems, J. Differ. Equations, 272 (2021), 74–104. https://doi.org/10.1016/j.jde.2020.09.034 doi: 10.1016/j.jde.2020.09.034
    [27] Y. Lin, Periodic measures of reaction-diffusion lattice systems driven by superlinear noise, Electron. Res. Arch., 30 (2022), 35–51. https://doi.org/10.3934/era.2022002 doi: 10.3934/era.2022002
    [28] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(314) PDF downloads(23) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog