Research article

Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations

  • Received: 28 August 2023 Revised: 28 November 2023 Accepted: 12 December 2023 Published: 16 January 2024
  • In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time $ T^* $ is given. Second, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities when the solutions blow up.

    Citation: Qianqian Zhu, Yaojun Ye, Shuting Chang. Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations[J]. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046

    Related Papers:

  • In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time $ T^* $ is given. Second, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities when the solutions blow up.



    加载中


    [1] R. E. Showalter, T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26.
    [2] V. R. Gopala Rao, T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Rational Mech. Anal., 49 (1972), 57–78. https://doi.org/10.1007/BF00281474 doi: 10.1007/BF00281474
    [3] E. Milne, The diffusion of imprisoned radiation through a gas, J. London Math. Soc., 1 (1926), 40–51. https://doi.org/10.1112/jlms/s1-1.1.40 doi: 10.1112/jlms/s1-1.1.40
    [4] S. M. Hassanizadeh, W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 29 (1993), 3389–3405. https://doi.org/10.1029/93WR01495 doi: 10.1029/93WR01495
    [5] L. Cueto-Felgueroso, R. Juanes, A phase-field model of unsaturated flow, Water Resour. Res., 45 (2009), W10409. https://doi.org/10.1029/2009WR007945 doi: 10.1029/2009WR007945
    [6] L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media, IZV. Akad. Nauk SSSR, Ser. Geogr., 1 (1948), 12–45.
    [7] B. C. Aslan, W. W. Hager, S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning, J. Math. Anal. Appl., 341 (2008), 1028–1041. https://doi.org/10.1016/j.jmaa.2007.11.007 doi: 10.1016/j.jmaa.2007.11.007
    [8] R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527–543. https://doi.org/10.1137/0503051 doi: 10.1137/0503051
    [9] R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25–42. https://doi.org/10.1137/0506004 doi: 10.1137/0506004
    [10] E. D. Benedetto, R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731–751. https://doi.org/10.1137/0512062 doi: 10.1137/0512062
    [11] X. Cao, I. S. Pop, Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions, Comput. Math. Appl., 69 (2015), 688–695. https://doi.org/10.1016/j.camwa.2015.02.009 doi: 10.1016/j.camwa.2015.02.009
    [12] Y. Fan, I. S. Pop, Equivalent formulations and numerical schemes for a class of pseudo parabolic equations, J. Comput. Appl. Math., 246 (2013), 86–93. https://doi.org/10.1016/j.cam.2012.07.031 doi: 10.1016/j.cam.2012.07.031
    [13] C. M. Cuesta, I. S. Pop, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour, J. Comput. Appl. Math., 224 (2009), 269–283. https://doi.org/10.1016/j.cam.2008.05.001 doi: 10.1016/j.cam.2008.05.001
    [14] B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions, J. Differ. Equations, 237 (2007), 278–306. https://doi.org/10.1016/j.jde.2007.03.011 doi: 10.1016/j.jde.2007.03.011
    [15] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Periodic boundary value problem for nonlinear Sobolev-type equation, Funct. Anal. Appl., 44 (2010), 171–181. https://doi.org/10.1007/s10688-010-0022-1 doi: 10.1007/s10688-010-0022-1
    [16] E. I. Kaikina, Initial boundary value problems for nonlinear pseudo-parabolic equations in a critical case, Electron. J. Differ. Equations, 109 (2007), 1–25.
    [17] T. Matahashi, M. Tsutsumi, On a periodic problem for pseudo-parabolic equations of Sobolev-Galpen type, Math. Jpn., 22 (1978), 535–553.
    [18] T. Matahashi, M. Tsutsumi, Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space, Funkcialaj Ekvacioj, 22 (1979), 51–66.
    [19] E. DI Benedetto, M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821–854.
    [20] R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [21] H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro- differential equations, Commun. Partial Differ. Equations, 17 (1992), 1369–1385. https://doi.org/10.1080/03605309208820889 doi: 10.1080/03605309208820889
    [22] S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a visco-elastic term, in Nonlinear Elliptic and Parabolic Problems, Birkhauser Basel, (2005), 351–356. https://doi.org/10.1007/3-7643-7385-7_19
    [23] S. Messaoudi, Blow-up of solutions of a semilinear heat equation with a memory term, Abstr. Appl. Anal., 2005 (2005), 87–94.
    [24] F. Sun, L. Liu, Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735–755. https://doi.org/10.1080/00036811.2017.1400536 doi: 10.1080/00036811.2017.1400536
    [25] H. Di, Y. Shang, J. Yu, Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term, AIMS Math., 98 (2020), 3408–3422. https://doi.org/10.3934/math.2020220 doi: 10.3934/math.2020220
    [26] Z. Cao, L. K. Gu, Initial-boundary value problem for a degenerate quasilinear parabolic equation of order2m, Appl. Math. Mech., 3 (1990), 13–20.
    [27] B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in $L^r$ (I), Nonlinear Anal., 48 (2002), 747–764. https://doi.org/10.1016/S0362-546X(00)00212-1 doi: 10.1016/S0362-546X(00)00212-1
    [28] B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in $L^r$ (II), initial data in critical Sobolev spaces$H^{-s, r^s}$, Nonlinear Anal., 52 (2003), 851–868. https://doi.org/10.1016/S0362-546X(02)00136-0 doi: 10.1016/S0362-546X(02)00136-0
    [29] G. Caristi, E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710–722. https://doi.org/10.1016/S0022-247X(03)00062-3 doi: 10.1016/S0022-247X(03)00062-3
    [30] V. A. Galaktionov, S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321–1338.
    [31] C. J. Budd, V. A. Galaktionov, J. F. Williams, Self-similar blow-up in higher-order semilinear parabolic equations, SIAM J. Appl. Math., 64 (2004), 1775–1809. https://doi.org/10.1137/S003613990241552X doi: 10.1137/S003613990241552X
    [32] K. Ishige, T. Kawakami, S. Okabe, Existence of solutions for a higher-order semilinear parabolic equation with singular initial data, Ann. Inst. Henri Poincare C Anal. Linéaire, 37 (2020), 1185–1209. https://doi.org/10.1016/j.anihpc.2020.04.002 doi: 10.1016/j.anihpc.2020.04.002
    [33] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London Ser. A: Math. Phys., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [34] L. Xiao, M. Li, Initial boundary value problem for a class of higher-order n-dimensional nonlinear pseudo-parabolic equations, Boundary Value Probl., 2021 (2021). https://doi.org/10.1186/s13661-020-01482-6
    [35] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5
    [36] A. Rahmoune, Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term, Appl. Anal., 102 (2023), 3503–3531. https://doi.org/10.1080/00036811.2022.2078716 doi: 10.1080/00036811.2022.2078716
    [37] A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in Nonlinear Sobolev Type Equations, De Gruyter, 2011. https://doi.org/10.1515/9783110255294
    [38] M. Escobedo, M. A. Herrero, A semilinear parabolic system in bounded domain, Ann. Mat. Pura Appl., 165 (1993), 315–336. https://doi.org/10.1007/BF01765854 doi: 10.1007/BF01765854
    [39] Y. Ye, Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term, Nonlinear Anal. Theory Methods Appl., 112 (2015), 129–146. https://doi.org/10.1016/j.na.2014.09.001 doi: 10.1016/j.na.2014.09.001
    [40] F. Tahamtani, M. Shahrouzi, Existence and blow-up of solutions to a Petrovsky equation with memory and nonlinear source term, Boundary Value Probl., 2012 (2012). https://doi.org/10.1186/1687-2770-2012-50
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(605) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog