Loading [MathJax]/jax/output/SVG/jax.js
Research article

Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations

  • Received: 28 August 2023 Revised: 28 November 2023 Accepted: 12 December 2023 Published: 16 January 2024
  • In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time T is given. Second, a lower bound on the blow-up time T is obtained by applying differential inequalities when the solutions blow up.

    Citation: Qianqian Zhu, Yaojun Ye, Shuting Chang. Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations[J]. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046

    Related Papers:

    [1] Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289
    [2] Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129
    [3] Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032
    [4] Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of $ p $-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136
    [5] Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057
    [6] Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005
    [7] Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021
    [8] Cheng Wang . Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, 2021, 29(5): 2915-2944. doi: 10.3934/era.2021019
    [9] Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064
    [10] Abdelhadi Safsaf, Suleman Alfalqi, Ahmed Bchatnia, Abderrahmane Beniani . Blow-up dynamics in nonlinear coupled wave equations with fractional damping and external source. Electronic Research Archive, 2024, 32(10): 5738-5751. doi: 10.3934/era.2024265
  • In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time T is given. Second, a lower bound on the blow-up time T is obtained by applying differential inequalities when the solutions blow up.



    In this paper, we consider the following initial boundary value problem for higher-order nonlinear viscous parabolic type equations.

    {ut+(Δ)Lu+(Δ)Kutt0g(ts)(Δ)Lu(s)ds=a|u|R2u,xΩ,t0,    (1.1)u(x,0)=u0(x)HL0(Ω),    (1.2)iuvi=0,i=0,1,2,...L1xΩ,t0,    (1.3)

    where L,K1 is an integer number, R max {2,2a,2H} where a>0 is a real number, and ΩRN(N1) is a bounded domain with a smooth boundary Ω.

    Equation (1.1) includes many important physical models. In the absence of the memory term and dispersive term, and with L=K=1 and a=0, Eq (1.1) becomes the linear pseudo-parabolic equation

    utΔuβut=0. (1.4)

    Showalter and Ting [1] and Gopala Rao and Ting [2] investigated the initial boundary value problem of the linear Eq (1.4) and proved the existence and uniqueness of solutions. Pseudo-parabolic equations appear in many applications for natural sciences, such as radiation with time delay [3], two-phase porous media flow models with dynamic capillarity or hysteresis [4], phase field-type models for unsaturated porous media flows [5], heat conduction models [6], models to describe lightning [7], and so on. A number of authors (Showalter [8,9], DiBenedetto and Showalter [10], Cao and Pop [11], Fan and Pop [12], Cuesta and Pop [13], Schweizer [14], Kaikina [15,16], Matahashi and Tsutsumi [17,18]) have considered this kind of equation by various methods and made a lot of progress. Not only were the existence, uniqueness, and nonexistence results for pseudo-parabolic equations were obtained, but the asymptotic behavior, regularity, and other properties of solutions were also investigated.

    In 1972, Gopala Rao et al. [2,19] studied the equation utkΔutΔu=0. They use the principle of maximum value to establish the uniqueness and the existence of solutions. Using the potential well method and the comparison principle, Xu and Su[20] studied the overall existence, nonexistence, and asymptotic behavior of the solution of the equation utΔutΔu=uq, and they also proved that the solution blows up in finite time when J(u0)>d.

    When L=K=1, Eq (1.1) becomes

    utΔu=t0b(tτ)Δu(τ)dτ+f(u). (1.5)

    Equation (1.5) originates from various mathematical models in engineering and physical sciences, such as in the study of heat conduction in materials with memory. Yin [21] discussed the problem of initial boundary values of Eq (1.5) and obtained the global existence of classical solutions under one-sided growth conditions. Replacing the memory term b() in (1.5) by g(), Messaoudi[22] proves the blow-up of the solution with negative and vanishing initial energies. When f(u)=|u|q2u, Messaoudi[23] proved the result of the blow-up of solutions for this equation with positive initial energy under the appropriate conditions of b and q. Sun and Liu [24] studied the equation

    utΔuΔut+t0g(tτ)Δu(τ)dτ=uq2u. (1.6)

    They applied the Galerkin method, the concavity method, and the improved potential well method to prove existence of a global solution and the blow-up results of the solution when the initial energy J(u(0))d(), and Di et al. [25] obtained the blow-up results of the solution of Eq (1.6) when the initial energy is negative or positive and gave some upper bounds on the blow-up time, and they proved lower bounds on the blow up time by applying differential inequalities.

    When m>1, Cao and Gu[26] studied the higher order parabolic equations

    ut+(Δ)mu=|u|qu. (1.7)

    By applying variational theory and the Galerkin method, they obtained existence and uniqueness results for the global solution. When the initial value belongs to the negative index critical space Hs,Rs,Rs=nαwsα, Wang[27,28] proved the existence and uniqueness of the local and the global solutions of the Cauchy problem of Eq (1.7) by using LrLq estimates. Caristi and Mitidieri [29] applied the method in [30] to prove the existence and nonexistence of the global solution of the initial boundary value problem for higher-order parabolic equations when the initial value decays slowly. Budd et al. [31] studied the self-similar solutions of Eq (1.7) for n=1,k>1. Ishige et al. [32] proved the existence of solutions to the Cauchy problem for a class of higher-order semilinear parabolic equations by introducing a new majority kernel, and also gave the existence of a local time solution for the initial data and necessary conditions for the solution of the Cauchy problem, and determine the strongest singularity of the initial data for the solutions of the Cauchy problem.

    When K=L,g=0, problem (1.1) becomes the following n-dimensional higher-order proposed parabolic equation

    ut(x,t)+(1)MΔMut(x,t)+(1)MΔMu(x,t)=a|u|q1u. (1.8)

    Equation (1.8) describes some important physical problems [33] and has attracted the attention of many scholars. Xiao and Li [34] have proved the existence of a non-zero weak solution to the static problem of problem (1.8) by means of the mountain passing theorem, and, additionally, based on the method of potential well theory, they proved the existence of a global weak solution of the development in the equations.

    Based on the idea of Li and Tsai [35], this paper discusses the property of the solution of problem (1.1)–(1.3) regarding the solution blow-up in finite time under different initial energies E(0). An upper bound on the blow-up time T is established for different initial energies, and, additionally, a lower bound on the blow-up time T is established by applying a differential inequality.

    To describe the main results of this paper, this section gives some notations, generalizations, and important lemmas. We adopt the usual notations and convention. Let HL(Ω) denote the Sobolev space with the usual scalar products and norm, Where HL0(Ω) denotes the closure in HL0(Ω) of C0(Ω). For simplicity of notation, hereafter we denote by ||.||p the Lebesgue space Lp(Ω) norm, and by ||.|| the L2(Ω) norm; equivalently we write the norm ||DL|| instead of the HL0(Ω) norm ||.||HL0(Ω), where D denotes the gradient operator, that is, D==(x1,x2,....xn). Moreover, DL=j if L=2j, and DL=Dj if L=2j+1.

    Lp(Ω)=Lp,||u||Lp(Ω)=||u||p=(Ω|u|pdx)1p,
    HL0(Ω)=WL,20(Ω)=HL0,||u||HL0(Ω)=||u||HL0=(Ω|u|2+|DLu|2dx)12.

    To justify the main conclusions of this paper, the following assumptions are made on K L, and the relaxation function g().

    (A1) 1K<L are integers with 2aR<+ if n<2L; 2aR2nn2L if n>2L,

    where a>1

    (A2) g:R+R+ is a C1 function, satisfing

    g(t)0,g(t)0,2aR2a<β=10g(s)ds1t0g(s)ds. (2.1)

    Define the energy functional of problem (1.1)(1.3) as

    E(t)=t0ut2+12(1t0g(s)ds)DLu2+12(gDLu)(t)aRuRR (2.2)

    where (gDLu)(t)=t0g(ts)DLu(t)DLu(s)2ds.

    Both sides of Eq (1.1) are simultaneously multiplied by ut and integrated over Ω, and from (A1) and (2.1) we have that

    E(t)=DKut2+12(gDLu)(t)12g(t)DLu2<0. (2.3)

    Definition 2.1 We say that u(x,t) is a weak solution of problem (1.1) if uL([0,T);HL0(Ω)),utL2([0,T);HL0(Ω)), and u satisfies

    (ut,v)+(DLu,DLv)+(DKut,DKv)t0g(tτ)(DLu(τ),DLv)dτ=(a|u|R2u,v)

    for all test functions vHL0(Ω) and t[0,T].

    Theorem 2.1 (Local existence) Suppose that (A1) and (A2) hold. If (u0,u1)HL0(Ω)×L2(Ω), then there exists T>0 such that problem (1.1) admits a unique local solution u(t) which satisfies

    uL2([0,T);HL0(Ω)),utL2([0,T);L2(Ω)L2([0,T];HK0(Ω)).

    Moreover, at least one of the following statements holds true:

    t0||u||2+||DLu||2+,as tT,orT=+.

    The existence and uniqueness of the local solution for problem (1.1) can be obtained by using Faedo-Galerkin methods and the contraction mapping principle in [30,36,37,38].

    Lemma 2.1[39]. Let q be a real number with 2q+ if n2L, and 2q2nn2L if n>2L. Then there exists a constant B dependent on Ω and q such that

    uqBDLu,uHL0(Ω). (2.4)

    Remark 2.1. According to Eqs (1.1)(1.3) and Lemma 2.1, we get

    E(t)12(1t0g(s)ds)DLu2+12(gDLu)(t)aRuRR12βDLu2+12(gDLu)(t)aBRR(DLu2)R212[(gDLu)(t)+βDLu2]aBRRβR2[βDLu2+(gDLu)(t)]R2=Q([βDLu2+(gDLu)(t)]12). (2.5)

    Let Q(ξ)=12ξ2aBRRβR2ξR,ξ=(βDLu2+(gDLu)(t))12>0. A direct calculation yields that Q(ξ)=ξaBRβR2ξR1,Q(ξ)=1a(R1)BRβR2ξR2. From Q(ξ)=0, we get that ξ1=(βaB2)R2(R2). When ξ=ξ1, direct calculation gives Q(ξ)=2R<0. Therefore, Q(ξ) is maximum at ξ1, and its maximum value is

    H=Q(ξ1)=R22R(βaB2)R(R2)=R22Rξ21. (2.6)

    Lemma 2.2. Let conditions (A1),(A2) hold, u be a solution of ((1.1(1.3)), E(0)<H, and β12DLu0>ξ1. Then there exists ξ2>ξ1, such that

    βDLu2+(gDLu)(t)ξ22. (2.7)

    Proof. From Remark 2.1, Q(ξ) is increasing on (0,ξ1) and decreasing on (ξ1,+). Q(ξ),(ξ). According to E(0)<H, there exists ξ2,ξ2 such that ξ1(ξ2,ξ2), and Q(ξ2)=Q(ξ2)=E(0). To prove Eq (2.7), we use the converse method. Assume that there exists t0>0 such that

    βDLu(t0)2+(gDLu)(t0)<ξ22. (2.8)

    1) If ξ2<(βDLu(t0)2+(gDLu)(t0))12<ξ2, then

    Q([βDLu(t0)2+(gDLu)(t0)]12)>Q(ξ2)=Q(ξ2)=E(0)>E(t0).

    This contradicts (2.5).

    2) If (βDLu(t0)2+(gDLu)(t0))12ξ2.

    As β12||DLu0||>ξ1, according to (2.5), Q(β12DLu0)<E(0)=Q(ξ2), which implies that β12DLu0>ξ2. Applying the continuity of (βDLu(t0)2+(gDLu)(t0))12, we know that there exists a t1(0,t0) such that ξ2<(βDLu(t1)2+(gDLu)(t1))12<ξ2. hence, we have Q((βDLu(t1)2+(gDLu)(t1))12)>E(0)E(t0), which contradicts (2.5).

    The following lemma is very important and is similar to the proof of Lemma 4.2 in [35]. Here, we make some appropriate modifications

    Lemma 2.3[40]. Let Γ(t) be a nonincreasing function of [t0,],t00. Satisfying the differential inequality

    Γ2(t)ρ+ψΓ(t)2+1ε,tt0 (2.9)

    where ρ>0,ψ<0, there exists a positive number T such that

    limtTΓ(t)=0. (2.10)

    The upper bound for T is

    Tt0+1ψlnρψρψΓ(t0) (2.11)

    where Γ(t0)<min{1,ρψ}, and Tmax denotes the maximal existence time of the solution

    Tmax=sup{T>0:u(.,t)[0,T]}<+.

    In this section, we will give some blow-up results for solutions with initial energy (i) E(0)<0; (ii) 0E(0)<wR2H; and (iii) wR2HE(0)<||u0||2+||DKu0|||2μ. Moreover, some upper bounds for blow-up time T depending on the sign and size of initial energy E(0) are obtained for problem (1.1)–(1.3).

    Define the functionals

    Φ(t)=t0u2ds+t0DKu2ds, (3.1)
    Γ(t)=[Φ(t)+(T0t)(u02+DKu02)]ε (3.2)

    where 1βεR2a2a, and T0 is positive.

    Lemma 3.1. Let X,Y, and ϕ be positive, with p,q1,1p+1q=1. Then,

    XYϕpXpp+Yqqϕq. (3.3)

    Lemma 3.2. Let (A1),(A2) hold, u0HL0(Ω), and u be a solution of (1.1)(1.3). Then, we have

    Φ(t)4(1+ε)t0ut2dsΠ(t) (3.4)

    where Π(t)=4(1+ε)E(0)+w[βDLu2+(gDLu)],w=2ε12β>0.

    Proof. From (3.1), a direct calculation yields that

    Φ(t)=u2+DKu2=2t0Ωuutdxdτ+u02+2t0ΩDKuDKutdxds+DKu02, (3.5)
    Φ(t)=2Ωuutdx+2ΩDKuDKutdx=2Ωu[()Lu()Kut+t0g(ts)()Lu(s)ds+a|u|R2u]dx+2ΩDKuDKutdx=2DLu2ddtDKu2+2t0Ωg(ts)DLu(s)DLu(t)dxds+2auRR+ddtDku2. (3.6)

    We infer from (2.2),(2.3), and (3.6) that

    Φ(t)4(1+ε)t0ut2ds=Φ(t)4(1+ε)E(t)+(2+2ε)(1t0g(s)ds)DLu2+(2+2ε)(gDLu)4a(1+ε)RuRR4(1+ε)E(0)+2εDLu2+(2+2ε)(gDLu)+[24a(1+ε)R]uRR(2+2ε)t0g(s)dsDLu2+2t0Ωg(ts)DLu(s)DLu(t)dxds. (3.7)

    Applying Lemma 3.1 yields

    t0Ωg(ts)DLu(t)DLu(s)dxds=t0Ωg(ts)DLu(t)[DLu(s)DLu(t)]dxds+t0Ωg(ts)DLu(t)Dlu(t)dxds(gDLu)(t)+34t0g(s)dsDLu(t)2. (3.8)

    Combining (3.7) and (3.8), we get

    Φ(t)4(1+ε)t0ut2ds4(1+ε)E(0)+2εDLu2+2ε(gDLu)(12+2ε)t0g(s)dsDLu2>4(1+ε)E(0)+2εDLu2+2ε(gDLu)+(12+2ε)(β1)DLu2>4(1+ε)E(0)+w[βDLu2+(gDLu)(t)] (3.9)

    where w=2ε12β.

    Therom 3.1. Let assumptions (A1) and (A2) hold, and T0<1u02+DKu02. In addition, it is assumed that one of the following conditions holds true:

    (1)E(0)<0;(2)0E(0)<wR2H,β12DLu0>ξ1;(3)0<wR2H<E(0)<u02+DKu02μ.

    Then, the solution of problem (1.1)(1.3) blows up in finite time, which means the maximum time T of u is finite and

    limtT(t0u2ds+t0DKu2ds)=+. (3.10)

    Case (1). if E(0)<0, an upper bound on the blow-up time T can also be estimated according to the sign and size of energy E(0). Then,

    T(2ε+1)8ε2(ε+1)E(0)ln11T0(u02+DKu02).

    Case (2). if 0<E(0)<wR2H, and ξ1<β12DLu0, then

    T2ε+18ε2(ε+1)[wR2HE(0)].

    Case (3). if wR2HE(0)<u02+DKu02μ, then

    T2ε+12ε2Λχ(0)ln11T0(u02+DKu02)

    where χ(0)=u02+DKu02μE(0)=Φ(0)μE(0), μ=4(1+δ)Λ,Λ=wβ1B.

    Case (1). if E(0)<0, from (3.9) we infer that

    Φ(t)4(1+ε)E(0)+w[βDLu2+(gDLu(t))]+4(1+ε)t0ut2ds>0,t0. (3.11)

    Thus, it follows that Φ(t) is monotonically increasing. Therefore, Φ(t)>Φ(0)=u02+DKu02

    and the second derivative of Eq (3.2) gives

    Γ(t)=εΓ(t)1+1ε[Φ(t)u02], (3.12)
    Γ(t)=εΓ(t)1+1ε{Φ(t)[Φ(t)+(T0t)(u02+DKu02)](1+ε)[Φ(t)u02DKu02]2}=εΓ(t)1+2εV(t) (3.13)

    where

    V(t)=Φ(t)[Φ(t)+(T0t)(u02+DKu02)](1+ε)[Φ(t)u02DKu02]2.

    From Lemma 3.2, we have

    Φ(t)[Φ(t)+(T0t)(u02+DKu02)][Π(t)+4(1+ε)t0ut2ds][t0u2ds+t0DKu2ds+(T0t)(u02+DKu02)]Π(t)Γ(t)1ε+4(1+ε)t0ut2dst0u2ds+4(1+ε)t0ut2dst0DKu2ds. (3.14)

    Therefore,

    [Φ(t)u02DKu02]2=4(t0Ωuutdxds)2+4(t0ΩDKuDKutdxds)2+8t0Ωuutdxdst0ΩDKuDKutdxds. (3.15)

    Applying Holder's inequality, Lemma 3.1 yields

    4(t0Ωuutdxds)24t0u2dst0ut2ds, (3.16)
    4(t0ΩDKuDKutdxds)24t0DKu2dst0DKut2ds, (3.17)
    8t0Ωuutdxdst0ΩDKuDKutdxds4t0u2dst0DKut2ds+4t0DKu2dst0ut2ds. (3.18)

    Substituting (3.14)(3.18) into (3.13) yields

    V(t)>Π(t)Γ(t)1ε+4(1+ε)t0ut2dst0u2ds+4(1+ε)t0ut2dst0DKu2ds4(1+ε)t0DKu2dst0DKut2ds4(1+ε)t0u2dst0ut2ds4(1+ε)t0u2dst0DKut2ds4(1+ε)t0DKu2dst0ut2ds>Π(t)Γ(t)1ε. (3.19)

    From the definitions of (3.12), (3.19), and Π(t), it follows that

    Γ(t)εΠ(t)Γ(t)1+1εε(1+ε)E(0)Γ(t)1+1ε. (3.20)

    From Φ(t)>Φ(0)=u02+DKu02>0 and (3.12), we get Γ(t)<0, Γ(0)=0. (3.20) multiplied by Γ(t) and integrated over (0,t) gives

    Γ(t)28ε2(1+ε)1+2εE(0)Γ(0)2+1ε+8ε2(1+ε)1+2εE(0)Γ(0)2+1ε=ρ+ψΓ(t)2+1ε (3.21)

    where

    ρ=8ε2(1+ε)1+2εE(0)Γ(0)2+1ε>0, (3.22)
    ψ=8ε2(1+ε)1+2εE(0)<0 (3.23)

    where Γ(0)=[T0(u02+DKu02)]ε.

    Combining (3.21)(3.23) and Lemma 2.3 shows that there exists T such that limtTΓ(t)=0. I.e.

    limtT(t0u2ds+DKu2ds)=+.

    Furthermore, according to Lemma 2.3, the upper bound on the blow-up is given by

    T(2ε+1)8ε2(1+ε)E(0ln11T0(u02+DKu02). (3.24)

    Case (2). if 0<E(0)<wR2H, and β12DLu0>ξ1, by Lemma 2.2 and the definition of ξ1

    Π(t)=4(1+ε)E(0)+w[βDLu2+(gDLu)(t)]4(1+ε)E(0)+wξ224(1+ε)E(0)+wξ21>4(1+ε)E(0)+w4(1+ε)r2H=4(1+ε)[wr2HE(0)]>0. (3.25)

    Substituting (3.25) into (3.9) yields

    Φ(t)Π(t)+(4+4ε)t0ut2ds>(4+4ε)[wR2HE(0)]+(4+4ε)t0ut2ds>0. (3.26)

    Hence, Φ(t)>Φ(0)=u02+DKu020.

    Similar to case (1), we get

    Γ(t)=εΓ(t)1+2εV(t),V(t)Π(t)Γ(t)1ε. (3.27)

    From (3.25) and (3.27), we get

    Γ(t)εΠ(t)Γ(t)1+1ε4ε(1+ε)[wR2HE(0)]Γ(t)1+1ε,t0. (3.28)

    Similar to case (1), we have Γ(t)<0, Γ(0)=0. (3.28) Multiply by Γ(t) and integratig over (0,t) gives

    Γ(t)28ε2(ε+1)2ε+1[wR2HE(0)][H(0)2+1εH(t)2+1ε]=ρ1+ψ1Γ(t)2+1ε (3.29)

    where

    ρ1=8ε2(ε+1)2ε+1[wR2HE(0)]Γ(0)2+1ε>0, (3.30)
    ψ1=8ε2(ε+1)2ε+1[wR2HE(0)]>0. (3.31)

    By Lemma 2.3 and (3.29)(3.31), there exists T such that

    limtTΓ(t)=0,
    limtT(t0u2ds+t0DKu2 ds)=+

    and

    T2ε+18ε2(ε+1)[wR2HE(0)]ln11T0(u02+DKu02). (3.32)

    Case (3) : wR2HE(0)<u02+DKu02μ.

    Define

    χ(t)=u2+DKu2μE(0)=Φ(t)μE(0) (3.33)

    where μ=4(1+ε)Λ,Λ=wβ1B.

    ddtχ(t)=Φ(t)4(1+ε)E(0)+w[βDLu2+(gDLu)(t)]+4(1+ε)t0ut2ds4(1+ε)E(0)+wβ1βu2+4(1+ε)t0ut2ds=wββ[u24(1+ε)BwβE(0)]+4(1+ε)t0ut2ds>Λ[u2+DKu2μE(0)]+4(1+δ)t0ut2ds=Λχ(t)+4(1+ε)t0ut2ds. (3.34)

    According to (3.31) and

    u02+DKu2μE(0)=Φ(0)μE(0)=χ(0)>0 (3.35)

    we have ddtχ(t)Λχ(t), i.e., χ(t)χ(0)eΛt. Thereby, we have

    χ(t)=Φ(t)μE(0)χ(0)eΛtχ(0)>0,t0. (3.36)

    By (3.34)(3.36), we obtain

    ddtχ(t)=Φ(t)Λχ(t)Λχ(0)>0. (3.37)

    Thus, we get

    Φ(t)>Φ(0)=u02+DKu02>0,t>0.

    Similar to the process in case (1), it is possible to derive

    Γ(t)εΠ(t)Γ(t)1+1ε,t0. (3.38)

    By (3.34)(3.36), we conclude that

    Π(t)Λχ(t)Λχ(0).

    Consequently,

    Γ(t)εΠ(t)Γ(t)1+1εεΛχ(0)Γ(t)1+1ε,t>0. (3.39)

    Multiplying both sides of (3.39) by Γ(t), and integrating over [0,t], we have

    Γ(t)22ε2Γχ(0)2ε+1[Γ2+1ε0Γ(t)2+1ε]=ρ2+ψ2Γ(t)2+1ε, (3.40)
    ρ2=2ε2Γχ(0)2ε+1Γ(0)2+1ε>0,ψ2=2ε2Γχ(0)2ε+1>0. (3.41)

    By Lemma 2.3 and (3.40)(3.41), there exists a time T such that

    limtT(t0u2ds+t0DKu2ds)=+

    and

    T2ε+12ε2Λχ(0)ln11T0(u02+DKu02).

    This section investigates a lower bound on the blow-up time T when the solution of Eqs (1.1)(1.3) occurs in finite time.

    Theorem 4.1. Let A1 and A2 hold, u0HL0(Ω), and u be a solution of Eqs (1.1)(1.3). If u blows up in the sense of HL0(Ω), then the lower bound T of the blow-up can be estimated as

    T+R(0)1K1+a(4+2R)rBRKR21+4E(0)dK1.

    Proof. Let

    R(t)=u2+DLu2. (4.1)

    Differentiating (1.5) with respect to t, we know from (1.1) that

    R(t)=2Ωuutdx+ddtDLu2=2Ωu[(Δ)Lu(Δ)Kut] (4.2)
    +2Ωu[t0g(ts)(Δ)Lu(s)ds+a|u|R2u+ddtDLu2]=2DLu2+2Ωg(ts)DLu(s)DLu(t)dxds (4.3)
    +2auRRddtDKu2+ddtDLu2. (4.4)

    By Lemma 3.1, we have

    2t0Ωg(ts)DLu(s)DLu(t)dxds2(gDLu2+12t0g(s)dsDLu2+2t0g(s)DLu2=2(gDLu2+52t0g(s)dsDLu2. (4.5)

    Substituting (4.5) into (1.6) yields

    R(t)[52t0g(s)ds1]DLu2+12DL2+2(gDLu)(t)+2auRRddtDKu2+ddtDLu2<12DL2+4t0ut2ds+2(1t0g(s)ds)DLu2+2(gDLu)(t)4aRuRR+(4aR+2a)uRR<R(t)+4E(0)+a(4R+2)BRDLuR<R(t)+4E(0)+a(4R+2)BRR(t)R2. (4.6)

    Integrating (4.6) over [0,t] yields

    R(t)R(0)1K1+a4+2RRBRKR21+4E(0)dK1t. (4.7)

    If u blows up with HL0, then T has a lower bound

    T+R(0)1K1+a4+2RRBRKR21+4E(0), (4.8)

    which thereby completes the proof of Theorem 4.1.

    By using concavity analysis, we get the blow-up results of the solution when the initial energy is negative or positive and an upper bound on the blow-up time T. In addition, a lower bound on the blow-up time T is obtained by applying differential inequalities in the case where the solution has a blow-up.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare there is no conflict of interest.



    [1] R. E. Showalter, T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26.
    [2] V. R. Gopala Rao, T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Rational Mech. Anal., 49 (1972), 57–78. https://doi.org/10.1007/BF00281474 doi: 10.1007/BF00281474
    [3] E. Milne, The diffusion of imprisoned radiation through a gas, J. London Math. Soc., 1 (1926), 40–51. https://doi.org/10.1112/jlms/s1-1.1.40 doi: 10.1112/jlms/s1-1.1.40
    [4] S. M. Hassanizadeh, W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 29 (1993), 3389–3405. https://doi.org/10.1029/93WR01495 doi: 10.1029/93WR01495
    [5] L. Cueto-Felgueroso, R. Juanes, A phase-field model of unsaturated flow, Water Resour. Res., 45 (2009), W10409. https://doi.org/10.1029/2009WR007945 doi: 10.1029/2009WR007945
    [6] L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media, IZV. Akad. Nauk SSSR, Ser. Geogr., 1 (1948), 12–45.
    [7] B. C. Aslan, W. W. Hager, S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning, J. Math. Anal. Appl., 341 (2008), 1028–1041. https://doi.org/10.1016/j.jmaa.2007.11.007 doi: 10.1016/j.jmaa.2007.11.007
    [8] R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527–543. https://doi.org/10.1137/0503051 doi: 10.1137/0503051
    [9] R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25–42. https://doi.org/10.1137/0506004 doi: 10.1137/0506004
    [10] E. D. Benedetto, R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731–751. https://doi.org/10.1137/0512062 doi: 10.1137/0512062
    [11] X. Cao, I. S. Pop, Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions, Comput. Math. Appl., 69 (2015), 688–695. https://doi.org/10.1016/j.camwa.2015.02.009 doi: 10.1016/j.camwa.2015.02.009
    [12] Y. Fan, I. S. Pop, Equivalent formulations and numerical schemes for a class of pseudo parabolic equations, J. Comput. Appl. Math., 246 (2013), 86–93. https://doi.org/10.1016/j.cam.2012.07.031 doi: 10.1016/j.cam.2012.07.031
    [13] C. M. Cuesta, I. S. Pop, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour, J. Comput. Appl. Math., 224 (2009), 269–283. https://doi.org/10.1016/j.cam.2008.05.001 doi: 10.1016/j.cam.2008.05.001
    [14] B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions, J. Differ. Equations, 237 (2007), 278–306. https://doi.org/10.1016/j.jde.2007.03.011 doi: 10.1016/j.jde.2007.03.011
    [15] E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Periodic boundary value problem for nonlinear Sobolev-type equation, Funct. Anal. Appl., 44 (2010), 171–181. https://doi.org/10.1007/s10688-010-0022-1 doi: 10.1007/s10688-010-0022-1
    [16] E. I. Kaikina, Initial boundary value problems for nonlinear pseudo-parabolic equations in a critical case, Electron. J. Differ. Equations, 109 (2007), 1–25.
    [17] T. Matahashi, M. Tsutsumi, On a periodic problem for pseudo-parabolic equations of Sobolev-Galpen type, Math. Jpn., 22 (1978), 535–553.
    [18] T. Matahashi, M. Tsutsumi, Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space, Funkcialaj Ekvacioj, 22 (1979), 51–66.
    [19] E. DI Benedetto, M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821–854.
    [20] R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [21] H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro- differential equations, Commun. Partial Differ. Equations, 17 (1992), 1369–1385. https://doi.org/10.1080/03605309208820889 doi: 10.1080/03605309208820889
    [22] S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a visco-elastic term, in Nonlinear Elliptic and Parabolic Problems, Birkhauser Basel, (2005), 351–356. https://doi.org/10.1007/3-7643-7385-7_19
    [23] S. Messaoudi, Blow-up of solutions of a semilinear heat equation with a memory term, Abstr. Appl. Anal., 2005 (2005), 87–94.
    [24] F. Sun, L. Liu, Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735–755. https://doi.org/10.1080/00036811.2017.1400536 doi: 10.1080/00036811.2017.1400536
    [25] H. Di, Y. Shang, J. Yu, Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term, AIMS Math., 98 (2020), 3408–3422. https://doi.org/10.3934/math.2020220 doi: 10.3934/math.2020220
    [26] Z. Cao, L. K. Gu, Initial-boundary value problem for a degenerate quasilinear parabolic equation of order2m, Appl. Math. Mech., 3 (1990), 13–20.
    [27] B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in Lr (I), Nonlinear Anal., 48 (2002), 747–764. https://doi.org/10.1016/S0362-546X(00)00212-1 doi: 10.1016/S0362-546X(00)00212-1
    [28] B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in Lr (II), initial data in critical Sobolev spacesHs,rs, Nonlinear Anal., 52 (2003), 851–868. https://doi.org/10.1016/S0362-546X(02)00136-0 doi: 10.1016/S0362-546X(02)00136-0
    [29] G. Caristi, E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710–722. https://doi.org/10.1016/S0022-247X(03)00062-3 doi: 10.1016/S0022-247X(03)00062-3
    [30] V. A. Galaktionov, S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321–1338.
    [31] C. J. Budd, V. A. Galaktionov, J. F. Williams, Self-similar blow-up in higher-order semilinear parabolic equations, SIAM J. Appl. Math., 64 (2004), 1775–1809. https://doi.org/10.1137/S003613990241552X doi: 10.1137/S003613990241552X
    [32] K. Ishige, T. Kawakami, S. Okabe, Existence of solutions for a higher-order semilinear parabolic equation with singular initial data, Ann. Inst. Henri Poincare C Anal. Linéaire, 37 (2020), 1185–1209. https://doi.org/10.1016/j.anihpc.2020.04.002 doi: 10.1016/j.anihpc.2020.04.002
    [33] T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London Ser. A: Math. Phys., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
    [34] L. Xiao, M. Li, Initial boundary value problem for a class of higher-order n-dimensional nonlinear pseudo-parabolic equations, Boundary Value Probl., 2021 (2021). https://doi.org/10.1186/s13661-020-01482-6
    [35] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5
    [36] A. Rahmoune, Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term, Appl. Anal., 102 (2023), 3503–3531. https://doi.org/10.1080/00036811.2022.2078716 doi: 10.1080/00036811.2022.2078716
    [37] A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in Nonlinear Sobolev Type Equations, De Gruyter, 2011. https://doi.org/10.1515/9783110255294
    [38] M. Escobedo, M. A. Herrero, A semilinear parabolic system in bounded domain, Ann. Mat. Pura Appl., 165 (1993), 315–336. https://doi.org/10.1007/BF01765854 doi: 10.1007/BF01765854
    [39] Y. Ye, Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term, Nonlinear Anal. Theory Methods Appl., 112 (2015), 129–146. https://doi.org/10.1016/j.na.2014.09.001 doi: 10.1016/j.na.2014.09.001
    [40] F. Tahamtani, M. Shahrouzi, Existence and blow-up of solutions to a Petrovsky equation with memory and nonlinear source term, Boundary Value Probl., 2012 (2012). https://doi.org/10.1186/1687-2770-2012-50
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(998) PDF downloads(58) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog