In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time $ T^* $ is given. Second, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities when the solutions blow up.
Citation: Qianqian Zhu, Yaojun Ye, Shuting Chang. Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations[J]. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046
In this paper, we study the initial boundary value problem for a class of higher-order nonlinear pseudo-parabolic equations with a memory term. First, the blow-up results of the solution when the initial energy is negative or positive are obtained by using concavity analysis, and an upper bound on the blow-up time $ T^* $ is given. Second, a lower bound on the blow-up time $ T^* $ is obtained by applying differential inequalities when the solutions blow up.
[1] | R. E. Showalter, T. W. Ting, Pseudo-parabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1–26. |
[2] |
V. R. Gopala Rao, T. W. Ting, Solutions of pseudo-heat equations in the whole space, Arch. Rational Mech. Anal., 49 (1972), 57–78. https://doi.org/10.1007/BF00281474 doi: 10.1007/BF00281474
![]() |
[3] |
E. Milne, The diffusion of imprisoned radiation through a gas, J. London Math. Soc., 1 (1926), 40–51. https://doi.org/10.1112/jlms/s1-1.1.40 doi: 10.1112/jlms/s1-1.1.40
![]() |
[4] |
S. M. Hassanizadeh, W. G. Gray, Thermodynamic basis of capillary pressure in porous media, Water Resour. Res., 29 (1993), 3389–3405. https://doi.org/10.1029/93WR01495 doi: 10.1029/93WR01495
![]() |
[5] |
L. Cueto-Felgueroso, R. Juanes, A phase-field model of unsaturated flow, Water Resour. Res., 45 (2009), W10409. https://doi.org/10.1029/2009WR007945 doi: 10.1029/2009WR007945
![]() |
[6] | L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous media, IZV. Akad. Nauk SSSR, Ser. Geogr., 1 (1948), 12–45. |
[7] |
B. C. Aslan, W. W. Hager, S. Moskow, A generalized eigenproblem for the Laplacian which arises in lightning, J. Math. Anal. Appl., 341 (2008), 1028–1041. https://doi.org/10.1016/j.jmaa.2007.11.007 doi: 10.1016/j.jmaa.2007.11.007
![]() |
[8] |
R. E. Showalter, Existence and representation theorems for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3 (1972), 527–543. https://doi.org/10.1137/0503051 doi: 10.1137/0503051
![]() |
[9] |
R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25–42. https://doi.org/10.1137/0506004 doi: 10.1137/0506004
![]() |
[10] |
E. D. Benedetto, R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731–751. https://doi.org/10.1137/0512062 doi: 10.1137/0512062
![]() |
[11] |
X. Cao, I. S. Pop, Two-phase porous media flows with dynamic capillary effects and hysteresis: Uniqueness of weak solutions, Comput. Math. Appl., 69 (2015), 688–695. https://doi.org/10.1016/j.camwa.2015.02.009 doi: 10.1016/j.camwa.2015.02.009
![]() |
[12] |
Y. Fan, I. S. Pop, Equivalent formulations and numerical schemes for a class of pseudo parabolic equations, J. Comput. Appl. Math., 246 (2013), 86–93. https://doi.org/10.1016/j.cam.2012.07.031 doi: 10.1016/j.cam.2012.07.031
![]() |
[13] |
C. M. Cuesta, I. S. Pop, Numerical schemes for a pseudo-parabolic Burgers equation: Discontinuous data and long-time behaviour, J. Comput. Appl. Math., 224 (2009), 269–283. https://doi.org/10.1016/j.cam.2008.05.001 doi: 10.1016/j.cam.2008.05.001
![]() |
[14] |
B. Schweizer, Regularization of outflow problems in unsaturated porous media with dry regions, J. Differ. Equations, 237 (2007), 278–306. https://doi.org/10.1016/j.jde.2007.03.011 doi: 10.1016/j.jde.2007.03.011
![]() |
[15] |
E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Periodic boundary value problem for nonlinear Sobolev-type equation, Funct. Anal. Appl., 44 (2010), 171–181. https://doi.org/10.1007/s10688-010-0022-1 doi: 10.1007/s10688-010-0022-1
![]() |
[16] | E. I. Kaikina, Initial boundary value problems for nonlinear pseudo-parabolic equations in a critical case, Electron. J. Differ. Equations, 109 (2007), 1–25. |
[17] | T. Matahashi, M. Tsutsumi, On a periodic problem for pseudo-parabolic equations of Sobolev-Galpen type, Math. Jpn., 22 (1978), 535–553. |
[18] | T. Matahashi, M. Tsutsumi, Periodic solutions of semilinear pseudo-parabolic equations in Hilbert space, Funkcialaj Ekvacioj, 22 (1979), 51–66. |
[19] | E. DI Benedetto, M. Pierre, On the maximum principle for pseudoparabolic equations, Indiana Univ. Math. J., 30 (1981), 821–854. |
[20] |
R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
![]() |
[21] |
H. M. Yin, Weak and classical solutions of some nonlinear volterra intergro- differential equations, Commun. Partial Differ. Equations, 17 (1992), 1369–1385. https://doi.org/10.1080/03605309208820889 doi: 10.1080/03605309208820889
![]() |
[22] | S. A. Messaoudi, Blow-up of solutions of a semilinear heat equation with a visco-elastic term, in Nonlinear Elliptic and Parabolic Problems, Birkhauser Basel, (2005), 351–356. https://doi.org/10.1007/3-7643-7385-7_19 |
[23] | S. Messaoudi, Blow-up of solutions of a semilinear heat equation with a memory term, Abstr. Appl. Anal., 2005 (2005), 87–94. |
[24] |
F. Sun, L. Liu, Y. Wu, Global existence and finite time blow-up of solutions for the semilinear pseudo-parabolic equation with a memory term, Appl. Anal., 98 (2019), 735–755. https://doi.org/10.1080/00036811.2017.1400536 doi: 10.1080/00036811.2017.1400536
![]() |
[25] |
H. Di, Y. Shang, J. Yu, Blow-up analysis of a nonlinear pseudo-parabolic equation with memory term, AIMS Math., 98 (2020), 3408–3422. https://doi.org/10.3934/math.2020220 doi: 10.3934/math.2020220
![]() |
[26] | Z. Cao, L. K. Gu, Initial-boundary value problem for a degenerate quasilinear parabolic equation of order2m, Appl. Math. Mech., 3 (1990), 13–20. |
[27] |
B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in $L^r$ (I), Nonlinear Anal., 48 (2002), 747–764. https://doi.org/10.1016/S0362-546X(00)00212-1 doi: 10.1016/S0362-546X(00)00212-1
![]() |
[28] |
B. Wang, The Cauchy problem for critical and subcritical semilinear parabolic equations in $L^r$ (II), initial data in critical Sobolev spaces$H^{-s, r^s}$, Nonlinear Anal., 52 (2003), 851–868. https://doi.org/10.1016/S0362-546X(02)00136-0 doi: 10.1016/S0362-546X(02)00136-0
![]() |
[29] |
G. Caristi, E. Mitidieri, Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., 279 (2003), 710–722. https://doi.org/10.1016/S0022-247X(03)00062-3 doi: 10.1016/S0022-247X(03)00062-3
![]() |
[30] | V. A. Galaktionov, S. I. Pohozaev, Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators, Indiana Univ. Math. J., 51 (2002), 1321–1338. |
[31] |
C. J. Budd, V. A. Galaktionov, J. F. Williams, Self-similar blow-up in higher-order semilinear parabolic equations, SIAM J. Appl. Math., 64 (2004), 1775–1809. https://doi.org/10.1137/S003613990241552X doi: 10.1137/S003613990241552X
![]() |
[32] |
K. Ishige, T. Kawakami, S. Okabe, Existence of solutions for a higher-order semilinear parabolic equation with singular initial data, Ann. Inst. Henri Poincare C Anal. Linéaire, 37 (2020), 1185–1209. https://doi.org/10.1016/j.anihpc.2020.04.002 doi: 10.1016/j.anihpc.2020.04.002
![]() |
[33] |
T. B. Benjamin, J. L. Bona, J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London Ser. A: Math. Phys., 272 (1972), 47–78. https://doi.org/10.1098/rsta.1972.0032 doi: 10.1098/rsta.1972.0032
![]() |
[34] | L. Xiao, M. Li, Initial boundary value problem for a class of higher-order n-dimensional nonlinear pseudo-parabolic equations, Boundary Value Probl., 2021 (2021). https://doi.org/10.1186/s13661-020-01482-6 |
[35] |
M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some system of semilinear wave equations, Nonlinear Anal. Theory Methods Appl., 54 (2003), 1397–1415. https://doi.org/10.1016/S0362-546X(03)00192-5 doi: 10.1016/S0362-546X(03)00192-5
![]() |
[36] |
A. Rahmoune, Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term, Appl. Anal., 102 (2023), 3503–3531. https://doi.org/10.1080/00036811.2022.2078716 doi: 10.1080/00036811.2022.2078716
![]() |
[37] | A. B. Al'shin, M. O. Korpusov, A. G. Siveshnikov, Blow up in Nonlinear Sobolev Type Equations, De Gruyter, 2011. https://doi.org/10.1515/9783110255294 |
[38] |
M. Escobedo, M. A. Herrero, A semilinear parabolic system in bounded domain, Ann. Mat. Pura Appl., 165 (1993), 315–336. https://doi.org/10.1007/BF01765854 doi: 10.1007/BF01765854
![]() |
[39] |
Y. Ye, Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term, Nonlinear Anal. Theory Methods Appl., 112 (2015), 129–146. https://doi.org/10.1016/j.na.2014.09.001 doi: 10.1016/j.na.2014.09.001
![]() |
[40] | F. Tahamtani, M. Shahrouzi, Existence and blow-up of solutions to a Petrovsky equation with memory and nonlinear source term, Boundary Value Probl., 2012 (2012). https://doi.org/10.1186/1687-2770-2012-50 |