In this paper, we consider the first boundary value problem for a class of steady non-Newtonian micropolar fluid equations with heat convection in the three-dimensional smooth and bounded domain $ \Omega $. By using the fixed-point theorem and introducing a family of penalized problems, under the condition that the external force term and the vortex viscosity coefficient are appropriately small, the existence and uniqueness of strong solutions of the problem are obtained.
Citation: Changjia Wang, Yuxi Duan. Well-posedness for heat conducting non-Newtonian micropolar fluid equations[J]. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043
In this paper, we consider the first boundary value problem for a class of steady non-Newtonian micropolar fluid equations with heat convection in the three-dimensional smooth and bounded domain $ \Omega $. By using the fixed-point theorem and introducing a family of penalized problems, under the condition that the external force term and the vortex viscosity coefficient are appropriately small, the existence and uniqueness of strong solutions of the problem are obtained.
[1] | G. Łukaszewicz, Micropolar Fluids: Theory and Applications, Springer Science & Business Media, 1999. https://doi.org/10.1017/s0022112099236889 |
[2] | W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press: New York, 1978. |
[3] | C. Truesdell, K. R. Rajagopal, An Introduction to the Mechanics of Fluids, Birkhauser: Basel, 2000. https://doi.org/10.1007/978-0-8176-4846-6 |
[4] | L. Brandolese, M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Am. Math. Soc., 364 (2012), 5057–5090. https://doi.org/10.1090/S0002-9947-2012-05432-8 doi: 10.1090/S0002-9947-2012-05432-8 |
[5] | D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497–513. https://doi.org/10.1016/j.aim.2005.05.001 doi: 10.1016/j.aim.2005.05.001 |
[6] | J. R. Cannon, E. DiBenedetto, The initial value problem for the Boussinesq equations with data in $L^p$, in Rautmann, R. (eds) Approximation Methods for Navier-Stokes Problems. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 771 (1980), 129–144. https://doi.org/10.1007/bfb0086903 |
[7] | H. Morimoto, Non-stationary Boussinesq equations, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 159–161. https://doi.org/10.3792/pjaa.67.159 doi: 10.3792/pjaa.67.159 |
[8] | C. Wang, Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43–62. https://doi.org/10.1016/j.aim.2011.05.008 doi: 10.1016/j.aim.2011.05.008 |
[9] | E. Zadrzyńska, W. M. Zajączkowski, Existence of global weak solutions to 3D incompressible heat-conducting motions with large flux, Math. Methods Appl. Sci., 44 (2021), 6259–6281. https://doi.org/10.1002/mma.7156 doi: 10.1002/mma.7156 |
[10] | M. Beneš, I. Pažanin, On existence, regularity and uniqueness of thermally coupled incompressible flows in a system of three dimensional pipes, Nonlinear Anal., 149 (2017), 56–80. https://doi.org/10.1016/j.na.2016.10.007 doi: 10.1016/j.na.2016.10.007 |
[11] | E. Feireisl, J. Málek, On the Navier-Stokes equations with temperature-dependent transport coefficients, Differ. Equ. Nonlinear Mech., 2006 (2006), 1–14. |
[12] | T. Kim, D. Cao, Mixed boundary value problems of the system for steady flow of heat-conducting incompressible viscous fluids with dissipative heating, Methods Appl. Anal., 27 (2020), 87–124. https://doi.org/10.4310/MAA.2020.v27.n2.a1 doi: 10.4310/MAA.2020.v27.n2.a1 |
[13] | T. Kim, D. Cao, A non-steady system with friction boundary conditions for flow of heat-conducting incompressible viscous fluids, J. Math. Anal. Appl., 484 (2020), 123676. https://doi.org/10.1016/j.jmaa.2019.123676 doi: 10.1016/j.jmaa.2019.123676 |
[14] | Y. Kagei, M. R${\rm{\dot u}}$žička, G. Thäter, Natural convection with dissipative heating, Commun. Math. Phys., 214 (2000), 287–313. https://doi.org/10.1007/s002200000275 doi: 10.1007/s002200000275 |
[15] | J. Naumann, On the existence of weak solutions to the equations of non-stationary motion of heat-conducting incompressible viscous fluids, Math. Methods Appl. Sci., 29 (2006), 1883–1906. https://doi.org/10.1002/mma.754 doi: 10.1002/mma.754 |
[16] | E. Zadrzyńska, W. M. Zajączkowski, On stability of solutions to equations describing incompressible heat-conducting motions under Navier's boundary conditions, Acta Appl. Math., 152 (2017), 147–170. https://doi.org/10.1007/s10440-017-0116-3 doi: 10.1007/s10440-017-0116-3 |
[17] | L. Consiglieri, Stationary weak solutions for a class of non-Newtonian fluids with energy transfer, Int. J. Nonlinear Mech., 32 (1997), 961–972. https://doi.org/10.1016/S0020-7462(96)00087-X doi: 10.1016/S0020-7462(96)00087-X |
[18] | L. Consiglieri, T. Shilkin, Regularity of stationary weak solutions in the theory of generalized Newtonian fluids with energy transfer, J. Math. Sci., 115 (2003), 2771–2788. https://doi.org/10.1023/A:1023369819312 doi: 10.1023/A:1023369819312 |
[19] | L. Consiglieri, Weak solutions for a class of non-Newtonian fluids with energy transfer, J. Math. Fluid Mech., 2 (2000), 267–293. https://doi.org/10.1007/PL00000952 doi: 10.1007/PL00000952 |
[20] | T. Roubíček, Steady-state buoyancy-driven viscous flow with measure data, Math. Bohem., 126 (2001), 493–504. https://doi.org/10.21136/MB.2001.134009 doi: 10.21136/MB.2001.134009 |
[21] | M. Beneš, A note on the regularity of thermally coupled viscous flows with critical growth in nonsmooth domains, Math. Methods Appl. Sci., 36 (2013), 1290–1300. https://doi.org/10.1002/mma.2682 doi: 10.1002/mma.2682 |
[22] | M. Bulíček, J. Havrda, On existence of weak solution to a model describing incompressible mixtures with thermal diffusion cross effects, Z. Angew. Math. Mech., 95 (2015), 589–619. https://doi.org/10.1016/j.media.2013.04.012 doi: 10.1016/j.media.2013.04.012 |
[23] | Y. Chen, Q. He, X. Shi, T. Wang, X. Wang, On the motion of shear-thinning heat-conducting incompressible fluid-rigid system, Acta Math. Appl. Sin., Engl. Ser., 34 (2018), 534–552. https://doi.org/10.1007/s10255-018-0767-5 doi: 10.1007/s10255-018-0767-5 |
[24] | J. Naumann, M. Pokorný, J. Wolf, On the existence of weak solutions to the equations of steady flow of heat-conducting fluids with dissipative heating, Nonlinear Anal. Real World Appl., 13 (2012), 1600–1620. https://doi.org/10.1016/j.nonrwa.2011.11.018 doi: 10.1016/j.nonrwa.2011.11.018 |
[25] | Y. Kagei, M. Skowron, Nonstationary flows of nonsymmetric fluids with thermal convection, Hiroshima Math. J., 23 (1993), 343–363. https://doi.org/10.32917/hmj/1206128257 doi: 10.32917/hmj/1206128257 |
[26] | C. Amorim, M. Loayza, M. A. Rojas-Medar, The nonstationary flows of micropolar fluids with thermal convection: An iterative approach, Discrete Contin. Dyn. Syst., Ser. B, 26 (2021), 2509–2535. https://doi.org/10.3934/dcdsb.2020193 doi: 10.3934/dcdsb.2020193 |
[27] | G. Łukaszewicz, W. Waluś, A. Piskorek, On stationary flows of asymmetric fluids with heat convection, Math. Methods Appl. Sci., 11 (1989), 343–351. https://doi.org/10.1002/mma.1670110304 doi: 10.1002/mma.1670110304 |
[28] | N. Arada, A note on the regularity of flows with shear-dependent viscosity, Nonlinear Anal., 75 (2012), 5401–5415. https://doi.org/10.1016/j.na.2012.04.040 doi: 10.1016/j.na.2012.04.040 |
[29] | G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, Springer Science & Business Media, 2011. https://doi.org/10.1007/978-0-387-09620-9 |
[30] | O. Kreml, M. Pokorný, On the local strong solutions for the FENE dumbbell model, Discrete Contin. Dyn. Syst., Ser. S, 3 (2010), 311–324. https://doi.org/10.3934/dcdss.2010.3.311 doi: 10.3934/dcdss.2010.3.311 |
[31] | J. F. Gerbeau, C. Le Bris, T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Clarendon Press, 2006. https://doi.org/10.1093/acprof: oso/9780198566656.001.0001 |