Research article Special Issues

Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders

  • Received: 26 September 2023 Revised: 03 December 2023 Accepted: 15 December 2023 Published: 10 January 2024
  • The parametrized approach is extended in this study to find solutions to differential equations with fractal, fractional, fractal-fractional, and piecewise derivatives with the inclusion of a stochastic component. The existence and uniqueness of the solution to the stochastic Atangana-Baleanu fractional differential equation are established using Caratheodory's existence theorem. For the solution of differential equations using piecewise differential operators, which take into account combining deterministic and stochastic processes utilizing certain significant mathematical tools such as fractal and fractal-fractional derivatives, the applicability of the parametrized technique is being examined. We discuss the crossover behaviors of the model obtained by including these operators and we present some illustrative examples for some problems with piecewise differential operators.

    Citation: Seda IGRET ARAZ, Mehmet Akif CETIN, Abdon ATANGANA. Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders[J]. Electronic Research Archive, 2024, 32(2): 733-761. doi: 10.3934/era.2024035

    Related Papers:

  • The parametrized approach is extended in this study to find solutions to differential equations with fractal, fractional, fractal-fractional, and piecewise derivatives with the inclusion of a stochastic component. The existence and uniqueness of the solution to the stochastic Atangana-Baleanu fractional differential equation are established using Caratheodory's existence theorem. For the solution of differential equations using piecewise differential operators, which take into account combining deterministic and stochastic processes utilizing certain significant mathematical tools such as fractal and fractal-fractional derivatives, the applicability of the parametrized technique is being examined. We discuss the crossover behaviors of the model obtained by including these operators and we present some illustrative examples for some problems with piecewise differential operators.



    加载中


    [1] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. R. Astron. Soc., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [2] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, 1998.
    [3] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [4] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [5] W. Chen, Time-space fabric underlying anomalous diffusion, Chaos, Solitons Fractals, 28 (2006), 923–929. https://doi.org/10.1016/j.chaos.2005.08.199 doi: 10.1016/j.chaos.2005.08.199
    [6] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons Fractals, 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [7] J. He, X. Zhang, L. Liu, Y. Wu, Y. Cui, Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions, Boundary Value Probl., 2018 (2018). https://doi.org/10.1186/s13661-018-1109-5
    [8] J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation, Math. Model. Anal., 23 (2018), 611–626. https://doi.org/10.3846/mma.2018.037 doi: 10.3846/mma.2018.037
    [9] X. Zhang, L. Liu, Y. Wu, Y. Cui, New result on the critical exponent for solution of an ordinary fractional differential problem, J. Funct. Spaces, 2017 (2017), 3976469. https://doi.org/10.1155/2017/3976469 doi: 10.1155/2017/3976469
    [10] G. D. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. https://doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [11] D. Luo, M. Tian, Q. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos, Solitons Fractals, 158 (2022). https://doi.org/10.1016/j.chaos.2022.111996
    [12] Y. Zhao, L. Wang, Practical exponential stability of impulsive stochastic food chain system with time-varying delays, Mathematics, 11 (2023), 147. https://doi.org/10.3390/math11010147 doi: 10.3390/math11010147
    [13] M. Xia, L. Liu, J. Fang, Y. Zhang, Stability analysis for a class of stochastic differential equations with impulses, Mathematics, 11 (2023), 1541. https://doi.org/10.3390/math11061541 doi: 10.3390/math11061541
    [14] B. Wang, Q. Zhu, Stability analysis of discrete-time semi-Markov jump linearsystems with time delay, IEEE Trans. Autom., 68 (2023), 6758–6765. https://doi.org/10.1109/TAC.2023.3240926 doi: 10.1109/TAC.2023.3240926
    [15] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenousdisturbances and the event-triggered feedback control, IEEE Trans. Autom., 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [16] A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos, Solitons Fractals, 145 (2021). https://doi.org/10.1016/j.chaos.2020.110638
    [17] A. Atangana, S. I. Araz, A modified parametrized method for ordinary differential equations with nonlocal operators, HAL, 2022.
    [18] C. Liping, M. A. Khan, A. Atangana, S. Kumar, A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations, Alex. Eng. J., 60 (2021), 5193–5204. https://doi.org/10.1016/j.aej.2021.04.023 doi: 10.1016/j.aej.2021.04.023
    [19] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64 (1907), 95–115. https://doi.org/10.1007/BF01449883 doi: 10.1007/BF01449883
    [20] A. Atangana, S. I. Araz, Theory and methods of piecewise defined fractional operators, Elsevier, in press.
    [21] W. Wang, S. Cheng, Z. Guo, X. Yan, A note on the continuity for Caputo fractional stochastic differential equations, Chaos, 30 (2020), 073106. https://doi.org/10.1063/1.5141485 doi: 10.1063/1.5141485
    [22] A. Ahmadova, N. I. Mamudov, Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos, Solitons Fractals, 139 (2020), 110253. https://doi.org/10.1016/j.chaos.2020.110253 doi: 10.1016/j.chaos.2020.110253
    [23] A. Atangana, S. I. Araz, Step forward on nonlinear differential equations with the Atangana-Baleanu derivative: Inequalities, existence, uniqueness and method, Chaos, Solitons Fractals, 173 (2023), 113700. https://doi.org/10.1016/j.chaos.2023.113700 doi: 10.1016/j.chaos.2023.113700
    [24] D. F. Griffiths, D. J. Higham, Numerical Methods for Ordinary Differential Equations: Initial Value Problems, Springer Undergraduate Mathematics Series, Springer, 2010.
    [25] E. Süli, D. F. Mayers, An Introduction to Numerical Analysis, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511801181
    [26] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley, 2023.
    [27] T. Mekkaoui, A. Atangana, S. I. Araz, Predictor-corrector for non-linear differential and integral equation with fractal-fractional operators, Eng. Comput., 37 (2020), 2359–2368. https://doi.org/10.1007/s00366-020-00948-6 doi: 10.1007/s00366-020-00948-6
    [28] S. W. Teklu, Analysis of fractional order model on higher institution students' anxiety towards mathematics with optimal control theory, Sci. Rep., 13 (2023), 6867. https://doi.org/10.1038/s41598-023-33961-y doi: 10.1038/s41598-023-33961-y
    [29] D. A. Getahun, G. Adamu, A. Andargie, J. D. Mebrat, Predicting mathematics performance from anxiety, enjoyment, value, and self-efficacy beliefs towards mathematics among engineering majors, Bahir Dar J. Educ., 16 (2016).
    [30] A. Atangana, S. I. Araz, A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives, AIMS Math., 8 (2023), 27309–27327. https://doi.org/10.3934/math.20231397 doi: 10.3934/math.20231397
    [31] A. Akin, I. N. Kurbanoglu, The relationships between math anxiety, math attitudes, and self-efficacy: A structural equation model, Stud. Psychol., 53 (2011), 263.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(869) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog