Research article Special Issues

Hybrid short-term traffic flow prediction based on the effect of non-linear sequence noise


  • Received: 24 November 2023 Revised: 27 December 2023 Accepted: 29 December 2023 Published: 10 January 2024
  • Short-term traffic flow prediction is crucial for intelligent transport systems and mitigating traffic congestion. Therefore, precise prediction of real-time traffic conditions is becoming more important. Currently, the existing prediction models lack the ability to effectively extract spatio-temporal characteristics and fail to adequately account for the impact of non-linear noise. To address these issues, the study proposes a hybrid short-term traffic flow prediction model based on spatio-temporal characteristics. First, the method decomposes the initial spatio-temporal traffic sequence data into multiple modal components using the complementary ensemble empirical modal decomposition method. Then, spatio-temporal characteristics are extracted from the decomposed spatio-temporal components using a deep residual network. The predicted values of each factor are combined to obtain the final predicted values. To validate the model, traffic flow data that is collected at point 4909A on the M25 motorway in London is used. The results indicate that the proposed model outperforms other models in terms of accuracy metrics such as root mean square error, mean absolute percentage error, mean absolute error, mean squared error, and coefficient of determination. Therefore, the model has high accuracy and practicality and exhibits great potential for short-term traffic flow prediction.

    Citation: Gang Cheng, Yadong Liu. Hybrid short-term traffic flow prediction based on the effect of non-linear sequence noise[J]. Electronic Research Archive, 2024, 32(2): 707-732. doi: 10.3934/era.2024034

    Related Papers:

  • Short-term traffic flow prediction is crucial for intelligent transport systems and mitigating traffic congestion. Therefore, precise prediction of real-time traffic conditions is becoming more important. Currently, the existing prediction models lack the ability to effectively extract spatio-temporal characteristics and fail to adequately account for the impact of non-linear noise. To address these issues, the study proposes a hybrid short-term traffic flow prediction model based on spatio-temporal characteristics. First, the method decomposes the initial spatio-temporal traffic sequence data into multiple modal components using the complementary ensemble empirical modal decomposition method. Then, spatio-temporal characteristics are extracted from the decomposed spatio-temporal components using a deep residual network. The predicted values of each factor are combined to obtain the final predicted values. To validate the model, traffic flow data that is collected at point 4909A on the M25 motorway in London is used. The results indicate that the proposed model outperforms other models in terms of accuracy metrics such as root mean square error, mean absolute percentage error, mean absolute error, mean squared error, and coefficient of determination. Therefore, the model has high accuracy and practicality and exhibits great potential for short-term traffic flow prediction.



    加载中


    [1] H. Zheng, F. Lin, X. Feng, Y. Chen, A hybrid deep learning model with attention-based conv-LSTM networks for short-term traffic flow prediction, IEEE Trans. Intell. Transp. Syst., 22 (2020), 6910–6920. https://doi.org/10.1109/TITS.2020.2997352 doi: 10.1109/TITS.2020.2997352
    [2] M. Wei, S. Zhang, T. Liu, B. Sun, The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method, J. Air. Transp. Manage., 109 (2023), 102395. https://doi.org/10.1016/j.jairtraman.2023.102395 doi: 10.1016/j.jairtraman.2023.102395
    [3] M. Wei, S. Zhang, B. Sun, Comprehensive operating efficiency measurement of 28 Chinese airports using a two-stage DEA-Tobit method, Electron. Res. Arch., 31 (2023), 1543–1555. https://doi.org/10.3934/era.2023078 doi: 10.3934/era.2023078
    [4] X. Ma, J. Zhao, Y. Gong, X. Sun, Carrier sense multiple access with collision avoidance‐aware connectivity quality of downlink broadcast in vehicular relay networks, IET Microw. Antennas. Propag., 13 (2019), 1096–1103. https://doi.org/10.1049/iet-map.2018.6102 doi: 10.1049/iet-map.2018.6102
    [5] L. Li, Q. M. Zhang, J. H. Zhao, Y. W. Nie, Short-term traffic flow prediction method of different periods based on improved CNN-LSTM, J. Appl. Sci., 39 (2021), 185–198. https://doi.org/10.3969/j.issn.0255-8297.2021.02.001 doi: 10.3969/j.issn.0255-8297.2021.02.001
    [6] Y. Kamarianakis, P. Prastacos, Prediction traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches, Transp. Res. Rec., 1857 (2003), 74–84. https://doi.org/10.3141/1857-09 doi: 10.3141/1857-09
    [7] M. Castro-Neto, Y. S. Jeong, M. K. Jeong, L. D. Han, Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions, Expert. Syst. Appl., 36 (2009), 6164–6173. https://doi.org/10.1016/j.eswa.2008.07.069 doi: 10.1016/j.eswa.2008.07.069
    [8] Y. Lv, Y. Duan, W. Kang, Z. Li, F. Y. Wang, Traffic flow prediction with big data: A deep learning approach, IEEE Trans. Intell. Transp. Syst., 16 (2014), 865–873. https://doi.org/10.1109/TITS.2014.2345663 doi: 10.1109/TITS.2014.2345663
    [9] J. Zhao, Y. Nie, S. Ni, X. Sun, Traffic data imputation and prediction: An efficient realization of deep learning, IEEE Access, 8 (2020), 46713–46722. https://doi.org/10.1109/ACCESS.2020.2978530 doi: 10.1109/ACCESS.2020.2978530
    [10] W. Lu, Z. Yi, W. Liu, Y. Gu, Y. Rui, B. Ran, Efficient deep learning based method for multi‐lane speed prediction: a case study in Beijing, IET Intell. Transp. Syst., 14 (2020), 2073–2082. https://doi.org/10.1049/iet-its.2020.0410 doi: 10.1049/iet-its.2020.0410
    [11] R. Liu, Y. Liu, J. Gu, Improved AdaNet based on adaptive learning rate optimization, J. Comput. Appl., 40 (2020), 2804. https://doi.org/10.11772/j.issn.1001-9081.2020020237 doi: 10.11772/j.issn.1001-9081.2020020237
    [12] L. I. U. Yi-cheng, L. I. Zhi-peng, L. V. Chun-pu, Z. H. A. N. G. Tao, L. I. U. Yan, Network-wide traffic flow prediction research based on DTW algorithm spatial-temporal graph convolution, J. Transp. Syst. Eng. Inf. Technol., 2 (2022), 147. https://doi.org/10.16097/j.cnki.1009-6744.2022.03.017 doi: 10.16097/j.cnki.1009-6744.2022.03.017
    [13] S. Halyal, R. H. Mulangi, M. M. Harsha, prediction public transit passenger demand: With neural networks using APC data, Case Stud. Transp. Policy, 10 (2022), 965–975. https://doi.org/10.1016/j.cstp.2022.03.011 doi: 10.1016/j.cstp.2022.03.011
    [14] Y. Feng, J. Hao, X. Hao, J. Li, Forecasting short-term tourism demand with a decomposition-ensemble strategy, Proc. Comput. Sci., 199 (2022), 879–884. https://doi.org/10.1016/j.procs.2022.01.110 doi: 10.1016/j.procs.2022.01.110
    [15] Y. Bai, Z. Sun, B. Zeng, J. Deng, C. Li, A multi-pattern deep fusion model for short-term bus passenger flow prediction, Appl. Soft. Comput., 58 (2017), 669–680. https://doi.org/10.1016/j.asoc.2017.05.011 doi: 10.1016/j.asoc.2017.05.011
    [16] S. I. Alzahrani, I. A. Aljamaan, E. A. Al-Fakih, Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions, J. Infect. Public Health, 13 (2020), 914–919. https://doi.org/10.1016/j.jiph.2020.06.001 doi: 10.1016/j.jiph.2020.06.001
    [17] W. Huang, G. Song, H. Hong, K. Xie, Deep architecture for traffic flow prediction: deep belief networks with multitask learning, IEEE Trans. Intell. Transp. Syst., 15 (2014), 2191–2201. https://doi.org/10.1109/TITS.2014.2311123 doi: 10.1109/TITS.2014.2311123
    [18] Y. U. A. N. Hua, C. H. E. N. Zehao, Short-term traffic flow prediction based on temporal convolutional networks, Sch. Comput. Sci. Eng., S. China Univ. Technol., 48 (2020), 107–113. https://doi.org/10.12141/j.issn.1000-565X.190276 doi: 10.12141/j.issn.1000-565X.190276
    [19] X. Ma, Z. Tao, Y. Wang, H. Yu, Y. Wang, Long short-term memory neural network for traffic speed prediction using remote microwave sensor data, Transp. Res. Part C: Emerg. Technol., 54 (2015), 187–197. https://doi.org/10.1016/j.trc.2015.03.014 doi: 10.1016/j.trc.2015.03.014
    [20] B. Hussain, M. K. Afzal, S. Ahmad, A. M. Mostafa, Intelligent traffic flow prediction using optimized GRU model, IEEE Access, 9 (2021), 100736–100746. https://doi.org/10.1049/iet-its.2018.5593 doi: 10.1049/iet-its.2018.5593
    [21] W. Jiang, J. Luo, Graph neural network for traffic forecasting: A survey, Expert. Syst. Appl., 207 (2022), 117921. https://doi.org/10.48550/arXiv.2101.11174 doi: 10.48550/arXiv.2101.11174
    [22] Y. Li, S. Chai, Z. Ma, G. Wang, A hybrid deep learning framework for long-term traffic flow prediction, IEEE Access, 9 (2021), 11264–11271. https://doi.org/10.1109/ACCESS.2021.3050836 doi: 10.1109/ACCESS.2021.3050836
    [23] X. Yang, Q. Xue, X. Yang, H. Yin, Y. Qu, X. Li, et al., A novel prediction model for the inbound passenger flow of urban rail transit, Inf. Sci., 566 (2021), 347–363. https://doi.org/10.1016/j.ins.2021.02.036 doi: 10.1016/j.ins.2021.02.036
    [24] J. Zhang, F. Chen, Q. Shen, Cluster-based LSTM network for short-term passenger flow prediction in urban rail transit, IEEE Access, 7 (2019), 147653–147671. https://doi.org/10.1109/ACCESS.2019.2941987 doi: 10.1109/ACCESS.2019.2941987
    [25] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, Y. Wang, Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction, Sensors, 17 (2017), 818. https://doi.org/10.3390/s17040818 doi: 10.3390/s17040818
    [26] J. Zhang, Y. Zheng, D. Qi, R. Li, X. Yi, T. Li, Predicting citywide crowd flows using deep spatio-temporal residual networks, Artif. Intell., 259 (2018), 147–166. https://doi.org/10.1016/j.artint.2018.03.002 doi: 10.1016/j.artint.2018.03.002
    [27] Z. Wu, N. E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 1 (2009), 1–41. https://doi.org/10.1142/S1793536909000047 doi: 10.1142/S1793536909000047
    [28] J. R. Yeh, J. S. Shieh, N. E. Huang, Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method, Adv. Adapt. Data Anal., 2 (2010), 135–156. https://doi.org/10.1142/S1793536910000422 doi: 10.1142/S1793536910000422
    [29] P. Lou, Z. Wu, J. Hu, Q. Liu, Q Wei, Attention-based gated recurrent graph convolutional network for short-term traffic flow prediction, J. Math., 2023 (2023). https://doi.org/10.1155/2023/6933344 doi: 10.1155/2023/6933344
    [30] B. Li, Q. Yang, J. Chen, D. Yu, D. Wang, F. Wan, A dynamic spatio-temporal deep learning model for lane-level traffic prediction, J. Adv. Transp., 2023 (2023). https://doi.org/10.1155/2023/3208535 doi: 10.1155/2023/3208535
    [31] Z. Yang, C. Wang, Short‐term traffic flow prediction based on AST‐MTL‐CNN‐GRU, IET Intell. Transp. Syst., 2023. https://doi.org/10.1049/itr2.12400 doi: 10.1049/itr2.12400
    [32] K. Zhao, D. Guo, M. Sun, C. Zhao, H. Shuai, Short-term traffic flow prediction based on VMD and IDBO-LSTM, IEEE Access, 2023. https://doi.org/10.1109/ACCESS.2023.3312711 doi: 10.1109/ACCESS.2023.3312711
    [33] W. Zhao, Y. Yang, Z. Lu, Interval short-term traffic flow prediction method based on CEEMDAN-SE nosie reduction and LSTM optimized by GWO, Wireless Commun. Mobile Comput., 2022 (2022). https://doi.org/10.1155/2022/5257353 doi: 10.1155/2022/5257353
    [34] X. Jiang, A combined monthly precipitation prediction method based on CEEMD and improved LSTM, Plos One, 18 (2023), e0288211. https://doi.org/10.1371/journal.pone.0288211 doi: 10.1371/journal.pone.0288211
    [35] X. Chen, S. Wu, C. Shi, Y. Huang, Y. Yang, R. Ke, et al., Sensing data supported traffic flow prediction via denoising schemes and ANN: A comparison, IEEE Sens. J., 20 (2020), 14317–14328. https://doi.org/10.1109/JSEN.2020.3007809 doi: 10.1109/JSEN.2020.3007809
    [36] J. R. Yeh, J. S. Shieh, N. E. Huang, Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method, Adv. Adapt. Data Anal., 2 (2010), 135–156. https://doi.org/10.1142/S1793536910000422 doi: 10.1142/S1793536910000422
    [37] Abdeljaber, O. Avci, S. Kiranyaz, M. Gabbouj, D. J. Inman, Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, J. Sound Vib., 388 (2017), 154–170. https://doi.org/10.1016/j.jsv.2016.10.043 doi: 10.1016/j.jsv.2016.10.043
    [38] Y. J. Li, J. J. Huang, H. Y. Huang, N. Huang, Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network, J. Commun., 38 (2017), 109–120. https://doi.org/10.11959/j.issn.1000-436x.2017294 doi: 10.11959/j.issn.1000-436x.2017294
    [39] J. Fan, Q. Li, J. Hou, X. Feng, H. Karimian, S. Lin, A spatiotemporal prediction framework for air pollution based on deep RNN, ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., 4 (2017), 15–22. https://doi.org/10.5194/isprs-annals-IV-4-W2-15-2017 doi: 10.5194/isprs-annals-IV-4-W2-15-2017
    [40] Y. A. N. G. Yi-Yue, F. U. Qian, W. Qian, A prediction model for time series based on deep recurrent neural network, Comput. Technol. Dev., 27 (2017), 35–38. https://doi.org/10.3969/j.issn.1673-629X.2017.03.007 doi: 10.3969/j.issn.1673-629X.2017.03.007
    [41] R. Shi, L. Du, Multi-section traffic flow prediction based on MLR-LSTM neural network, Sensors, 22 (2022), 7517. https://doi.org/10.3390/s22197517 doi: 10.3390/s22197517
    [42] H. Zeng, Z. Peng, X. Huang, Y. Yang, R. Hu, Deep spatio-temporal neural network based on interactive attention for traffic flow prediction, Appl. Intell., (2022), 1–12. https://doi.org/10.1007/s10489-021-02879-1 doi: 10.1007/s10489-021-02879-1
    [43] J. Yang, X. Dong, H. Yang, X. Han, Y. Wang, J. Chen, Prediction of inbound and outbound passenger flow in urban rail transit based on spatio-temporal attention residual network, Appl. Sci., 13 (2023), 10266. https://doi.org/10.3390/app131810266 doi: 10.3390/app131810266
    [44] J. Zhou, H. Chang, X. Cheng, X. Zhao, A multiscale and high-precision LSTM-GASVR short-term traffic flow prediction model, Complexity, 2020 (2020), 1–17. https://doi.org/10.1155/2020/1434080 doi: 10.1155/2020/1434080
    [45] S. Xue, C. Shao, S. Wang, Y. Zhuang, Deep learning with bidirectional long short-term memory for traffic flow prediction, J. Phys. Conf. Ser., 1972 (2021), 012098. https://doi.org/10.1088/1742-6596/1972/1/012098 doi: 10.1088/1742-6596/1972/1/012098
    [46] L. Zhang, Q. Zhang, W. Yang, N. Wei, D. Dong, An improved k-nearest neighbor model for short-term traffic flow prediction, Procedia Soc. Behav. Sci., 96 (2013), 653–662. https://doi.org/10.1016/j.sbspro.2013.08.076 doi: 10.1016/j.sbspro.2013.08.076
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(799) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(23)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog