Research article Special Issues

Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth

  • Received: 12 December 2022 Revised: 15 March 2023 Accepted: 27 March 2023 Published: 28 April 2023
  • This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem

    $ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $

    where

    $ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $

    $ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.

    Citation: Cheng Ma. Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth[J]. Electronic Research Archive, 2023, 31(7): 3759-3775. doi: 10.3934/era.2023191

    Related Papers:

  • This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem

    $ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $

    where

    $ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $

    $ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.



    加载中


    [1] V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336. https://doi.org/10.1103/physreve.53.r1336 doi: 10.1103/physreve.53.r1336
    [2] V. I. Karpman, A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, 144 (2000), 194–210. https://doi.org/10.1016/S0167-2789(00)00078-6 doi: 10.1016/S0167-2789(00)00078-6
    [3] Y. Fukumoto, H. K. Mofatt, Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity, J. Fluid Mech., 417 (2000), 1–45. https://doi.org/10.1017/S0022112000008995 doi: 10.1017/S0022112000008995
    [4] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504
    [5] D. Bonheure, J. B. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167–2212. https://doi.org/10.1090/tran/7769 doi: 10.1090/tran/7769
    [6] O. Goubet, I. Manoubi, Standing waves for semilinear Schrödinger equations with discontinuous dispersion, Rend. Circ. Mat. Palermo, Ser. 2, 71 (2022), 1159–1171. https://doi.org/10.1007/s12215-022-00782-3 doi: 10.1007/s12215-022-00782-3
    [7] M. Khiddi, L. Essafi, Infinitely many solutions for quasilinear Schrödinger equations with sign-changing nonlinearity without the aid of 4-superlinear at infinity, Demonstr. Math., 55 (2022), 831–842. https://doi.org/10.1515/dema-2022-0169 doi: 10.1515/dema-2022-0169
    [8] M. Alotaibi, M. Jleli, B. Samet, C. Vetro, First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities, Z. Angew. Math. Phys., 73 (2022), 157–173. https://doi.org/10.1007/s00033-022-01784-y doi: 10.1007/s00033-022-01784-y
    [9] D. Bonheure, J. B. Casteras, E. M. dos Santos, R. Nascimento, Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIAM J. Math. Anal., 50 (2018), 5027–5071. https://doi.org/10.1137/17M1154138 doi: 10.1137/17M1154138
    [10] A. J. Fernández, L. Jeanjean, R. Mandel, M. Maris, Non-homogeneous Gagliardo-Nirenberg inequalities in $\mathbb{R}^{N}$ and application to a biharmonic non-linear Schrödinger equation, J. Differ. Equations, 330 (2022), 1–65. https://doi.org/10.1016/j.jde.2022.04.037 doi: 10.1016/j.jde.2022.04.037
    [11] D. Bonheure, J. B. Casteras, T. Gou, L. Jeanjean, Strong instability of ground states to a fourth order Schrödinger equation, Int. Math. Res. Not., 2019 (2019), 5299–5315. https://doi.org/10.1093/imrn/rnx273 doi: 10.1093/imrn/rnx273
    [12] B. H. Feng, J. Y. Liu, H. L. Niu, B. L. Zhang, Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersion, Nonlinear Anal., 196 (2020), 111791. https://doi.org/10.1016/j.na.2020.111791 doi: 10.1016/j.na.2020.111791
    [13] C. Ji, N. Su, Existence and stability of standing waves for the mixed dispersion nonlinear Schrödinger equation with a partial confinement in $\mathbb{R}^{N}$, J. Geom. Anal., 33 (2023), 171–195. https://doi.org/10.1007/s12220-023-01207-y doi: 10.1007/s12220-023-01207-y
    [14] H. J. Luo, Z. T. Zhang, Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations, Electron. Res. Arch., 30 (2022), 2871–2898. https://doi.org/10.3934/era.2022146 doi: 10.3934/era.2022146
    [15] Z. J. Ma, X. J. Chang, Normalized ground states of nonlinear biharmonic Schrödinger equations with Sobolev critical growth and combined nonlinearities, Appl. Math. Lett., 135 (2023), 108388. https://doi.org/10.1016/j.aml.2022.108388 doi: 10.1016/j.aml.2022.108388
    [16] E. D. Silva, M. L. Carvalho, C. Goulart, Periodic and asymptotically periodic fourth-order Schrödinger equations with critical and subcritical growth, Discrete Contin. Dyn. Syst., 42 (2022), 1039–1065. https://doi.org/10.3934/dcds.2021146 doi: 10.3934/dcds.2021146
    [17] C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a nonlinear Schrödinger equation with critical growth in $\mathbb{R}^{N}$, preprint, arXiv: 2103.07940.
    [18] C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equations, 61 (2022), 18–41. https://doi.org/10.1007/s00526-021-02123-1 doi: 10.1007/s00526-021-02123-1
    [19] H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555
    [20] M. J. Esteban, P. L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in Partial Differential Equations and the Calculus of Variations, (1989), 401–449. https://doi.org/10.1007/978-1-4615-9828-2_18
    [21] P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part I, Ann. Inst. Henri Poincare C, 1 (1984), 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0
    [22] C. O. Alves, C. Ji, Normalized solutions for the Schrödinger equations with $L^{2}$-subcritical growth and different types of potentials, J. Geom. Anal., 32 (2022), 165–189. https://doi.org/10.1007/s12220-022-00908-0 doi: 10.1007/s12220-022-00908-0
    [23] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theory Methods Appl., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1
    [24] M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscr. Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9
    [25] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. di Padova, 27 (1957), 284–305.
    [26] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 7 (1958), 102–137. Available from: https://zbmath.org/?q = an: 0089.09401.
    [27] L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 13 (1959), 115–162. Available from: http://www.numdam.org/item/ASNSP_1959_3_13_2_115_0.pdf.
    [28] M. Willem, Minimax Theorems, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [29] T. Bartsch, Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366–384. https://doi.org/10.1007/PL00001511 doi: 10.1007/PL00001511
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1228) PDF downloads(125) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog