This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem
$ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $
where
$ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $
$ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.
Citation: Cheng Ma. Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth[J]. Electronic Research Archive, 2023, 31(7): 3759-3775. doi: 10.3934/era.2023191
This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem
$ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $
where
$ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $
$ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.
[1] | V. I. Karpman, Stabilization of soliton instabilities by higher-order dispersion: fourth-order nonlinear Schrödinger-type equations, Phys. Rev. E, 53 (1996), R1336. https://doi.org/10.1103/physreve.53.r1336 doi: 10.1103/physreve.53.r1336 |
[2] | V. I. Karpman, A. G. Shagalov, Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Physica D, 144 (2000), 194–210. https://doi.org/10.1016/S0167-2789(00)00078-6 doi: 10.1016/S0167-2789(00)00078-6 |
[3] | Y. Fukumoto, H. K. Mofatt, Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity, J. Fluid Mech., 417 (2000), 1–45. https://doi.org/10.1017/S0022112000008995 doi: 10.1017/S0022112000008995 |
[4] | T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., 85 (1982), 549–561. https://doi.org/10.1007/BF01403504 doi: 10.1007/BF01403504 |
[5] | D. Bonheure, J. B. Casteras, T. Gou, L. Jeanjean, Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime, Trans. Amer. Math. Soc., 372 (2019), 2167–2212. https://doi.org/10.1090/tran/7769 doi: 10.1090/tran/7769 |
[6] | O. Goubet, I. Manoubi, Standing waves for semilinear Schrödinger equations with discontinuous dispersion, Rend. Circ. Mat. Palermo, Ser. 2, 71 (2022), 1159–1171. https://doi.org/10.1007/s12215-022-00782-3 doi: 10.1007/s12215-022-00782-3 |
[7] | M. Khiddi, L. Essafi, Infinitely many solutions for quasilinear Schrödinger equations with sign-changing nonlinearity without the aid of 4-superlinear at infinity, Demonstr. Math., 55 (2022), 831–842. https://doi.org/10.1515/dema-2022-0169 doi: 10.1515/dema-2022-0169 |
[8] | M. Alotaibi, M. Jleli, B. Samet, C. Vetro, First and second critical exponents for an inhomogeneous Schrödinger equation with combined nonlinearities, Z. Angew. Math. Phys., 73 (2022), 157–173. https://doi.org/10.1007/s00033-022-01784-y doi: 10.1007/s00033-022-01784-y |
[9] | D. Bonheure, J. B. Casteras, E. M. dos Santos, R. Nascimento, Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation, SIAM J. Math. Anal., 50 (2018), 5027–5071. https://doi.org/10.1137/17M1154138 doi: 10.1137/17M1154138 |
[10] | A. J. Fernández, L. Jeanjean, R. Mandel, M. Maris, Non-homogeneous Gagliardo-Nirenberg inequalities in $\mathbb{R}^{N}$ and application to a biharmonic non-linear Schrödinger equation, J. Differ. Equations, 330 (2022), 1–65. https://doi.org/10.1016/j.jde.2022.04.037 doi: 10.1016/j.jde.2022.04.037 |
[11] | D. Bonheure, J. B. Casteras, T. Gou, L. Jeanjean, Strong instability of ground states to a fourth order Schrödinger equation, Int. Math. Res. Not., 2019 (2019), 5299–5315. https://doi.org/10.1093/imrn/rnx273 doi: 10.1093/imrn/rnx273 |
[12] | B. H. Feng, J. Y. Liu, H. L. Niu, B. L. Zhang, Strong instability of standing waves for a fourth-order nonlinear Schrödinger equation with the mixed dispersion, Nonlinear Anal., 196 (2020), 111791. https://doi.org/10.1016/j.na.2020.111791 doi: 10.1016/j.na.2020.111791 |
[13] | C. Ji, N. Su, Existence and stability of standing waves for the mixed dispersion nonlinear Schrödinger equation with a partial confinement in $\mathbb{R}^{N}$, J. Geom. Anal., 33 (2023), 171–195. https://doi.org/10.1007/s12220-023-01207-y doi: 10.1007/s12220-023-01207-y |
[14] | H. J. Luo, Z. T. Zhang, Existence and stability of normalized solutions to the mixed dispersion nonlinear Schrödinger equations, Electron. Res. Arch., 30 (2022), 2871–2898. https://doi.org/10.3934/era.2022146 doi: 10.3934/era.2022146 |
[15] | Z. J. Ma, X. J. Chang, Normalized ground states of nonlinear biharmonic Schrödinger equations with Sobolev critical growth and combined nonlinearities, Appl. Math. Lett., 135 (2023), 108388. https://doi.org/10.1016/j.aml.2022.108388 doi: 10.1016/j.aml.2022.108388 |
[16] | E. D. Silva, M. L. Carvalho, C. Goulart, Periodic and asymptotically periodic fourth-order Schrödinger equations with critical and subcritical growth, Discrete Contin. Dyn. Syst., 42 (2022), 1039–1065. https://doi.org/10.3934/dcds.2021146 doi: 10.3934/dcds.2021146 |
[17] | C. O. Alves, C. Ji, O. H. Miyagaki, Multiplicity of normalized solutions for a nonlinear Schrödinger equation with critical growth in $\mathbb{R}^{N}$, preprint, arXiv: 2103.07940. |
[18] | C. O. Alves, C. Ji, O. H. Miyagaki, Normalized solutions for a Schrödinger equation with critical growth in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equations, 61 (2022), 18–41. https://doi.org/10.1007/s00526-021-02123-1 doi: 10.1007/s00526-021-02123-1 |
[19] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–345. https://doi.org/10.1007/BF00250555 doi: 10.1007/BF00250555 |
[20] | M. J. Esteban, P. L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in Partial Differential Equations and the Calculus of Variations, (1989), 401–449. https://doi.org/10.1007/978-1-4615-9828-2_18 |
[21] | P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part I, Ann. Inst. Henri Poincare C, 1 (1984), 109–145. https://doi.org/10.1016/S0294-1449(16)30428-0 doi: 10.1016/S0294-1449(16)30428-0 |
[22] | C. O. Alves, C. Ji, Normalized solutions for the Schrödinger equations with $L^{2}$-subcritical growth and different types of potentials, J. Geom. Anal., 32 (2022), 165–189. https://doi.org/10.1007/s12220-022-00908-0 doi: 10.1007/s12220-022-00908-0 |
[23] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. Theory Methods Appl., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[24] | M. Shibata, Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term, Manuscr. Math., 143 (2014), 221–237. https://doi.org/10.1007/s00229-013-0627-9 doi: 10.1007/s00229-013-0627-9 |
[25] | E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili, Rend. Semin. Mat. Univ. di Padova, 27 (1957), 284–305. |
[26] | E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat., 7 (1958), 102–137. Available from: https://zbmath.org/?q = an: 0089.09401. |
[27] | L. Nirenberg, On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa. Cl. Sci., 13 (1959), 115–162. Available from: http://www.numdam.org/item/ASNSP_1959_3_13_2_115_0.pdf. |
[28] | M. Willem, Minimax Theorems, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[29] | T. Bartsch, Z. Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation, Z. Angew. Math. Phys., 51 (2000), 366–384. https://doi.org/10.1007/PL00001511 doi: 10.1007/PL00001511 |