Research article Special Issues

Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow

  • Received: 28 August 2022 Revised: 12 October 2022 Accepted: 27 October 2022 Published: 08 November 2022
  • This paper investigates time-dependent double-diffusive Darcy flow which is defined in a semi-infinite strip pipe, where the generatrix of the pipe is not parallel to the coordinate axis any more. By using several results which have been derived in the literature, the spatial properties and the influence of the Soret coefficient on the solutions are both obtained. We also give some concrete examples.

    Citation: Xuejiao Chen, Yuanfei Li. Spatial properties and the influence of the Soret coefficient on the solutions of time-dependent double-diffusive Darcy plane flow[J]. Electronic Research Archive, 2023, 31(1): 421-441. doi: 10.3934/era.2023021

    Related Papers:

  • This paper investigates time-dependent double-diffusive Darcy flow which is defined in a semi-infinite strip pipe, where the generatrix of the pipe is not parallel to the coordinate axis any more. By using several results which have been derived in the literature, the spatial properties and the influence of the Soret coefficient on the solutions are both obtained. We also give some concrete examples.



    加载中


    [1] Y. Liu, Y. L. Chen, C. R. Luo, C. H. Lin, Phragmén-Lindelöf alternative results for the shallow water equations for transient compressible viscous flow, J. Math. Anal. Appl., 398 (2013), 409–420. https://doi.org/10.1016/j.jmaa.2012.08.054 doi: 10.1016/j.jmaa.2012.08.054
    [2] L. E. Payne, P. W. Schaefer, Some Phragmén-Lindelöf type results for the biharmonic equation, Z. angew. Math. Phys., 45 (1994), 414–432. https://doi.org/10.1007/BF00945929 doi: 10.1007/BF00945929
    [3] Y. F. Li, X. J. Chen, Phragmén-Lindelöf alternative results in time-dependent double-diffusive Darcy plane flow, Math. Methods Appl. Sci., 45 (2022), 6982–6997. https://doi.org/10.1002/mma.8220 doi: 10.1002/mma.8220
    [4] M. C. Leseduarte, R. Quintanilla, Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions, J. Appl. Anal. Comput., 7 (2017), 1323–1335. https://doi.org/10.11948/2017081 doi: 10.11948/2017081
    [5] Y. Liu, C. H. Lin, Phragmén-Lindelöf type alternative results for the stokes flow equation, Math. Inequal. Appl., 9 (2006), 671–694. https://doi.org/10.7153/mia-09-60 doi: 10.7153/mia-09-60
    [6] Y. F. Li, Z. Q. Li, Phragmén-Lindelöf type results for transient heat conduction equation with nonlinear boundary conditions, Acta Math. Sci. Ser. A, 40 (2020), 1248–1258. https://doi.org/10.3724/SP.J.1003-3998.2020.0512 doi: 10.3724/SP.J.1003-3998.2020.0512
    [7] M. W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, NewYork, 1974.
    [8] F. Franchi, B. Straughan, Continuous dependence and decay for the Forchheimer equations, Proc. R. Soc. London, Ser. A, 459 (2003), 3195–3202. https://doi.org/10.1098/rspa.2003.1169 doi: 10.1098/rspa.2003.1169
    [9] Y. Liu, Continuous dependence for a thermal convection model with temperature-dependent solubility, Appl. Math. Comput., 308 (2017), 18–30. https://doi.org/10.1016/j.amc.2017.03.004 doi: 10.1016/j.amc.2017.03.004
    [10] A. J. Harfash, Structural stability for convection models in a reacting porous medium with magnetic field effect, Ric. Mat., 63 (2014), 1–13. https://doi.org/10.1007/s11587-013-0152-x doi: 10.1007/s11587-013-0152-x
    [11] B. Straughan, Continuous dependence on the heat source in resonant porous penetrative convection, Stud. Appl. Math., 127 (2011), 302–314. https://doi.org/10.1111/j.1467-9590.2011.00521.x doi: 10.1111/j.1467-9590.2011.00521.x
    [12] A. O. Çelebi, V. K. Kalantarov, D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Appl. Math. Lett., 19 (2006), 801–807. https://doi.org/10.1016/j.aml.2005.11.002 doi: 10.1016/j.aml.2005.11.002
    [13] A. O. Celebi, V. K. Kalantarov, D. Ugurlu, Continuous dependence for the convective Brinkman CForchheimer equations, Appl. Anal., 84 (2005), 877–888. https://doi.org/10.1080/00036810500148911 doi: 10.1080/00036810500148911
    [14] Y. F. Li, S. Z. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.7153/jmi-2021-15-22 doi: 10.7153/jmi-2021-15-22
    [15] Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $R^2$, Appl. Math. Comput., 411 (2021), 126488. https://doi.org/10.1016/j.amc.2021.126488 doi: 10.1016/j.amc.2021.126488
    [16] Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simul., 150 (2018), 66–82. https://doi.org/10.1016/j.matcom.2018.02.009 doi: 10.1016/j.matcom.2018.02.009
    [17] Y. F. Li, X. J. Chen, J. C. Shi, Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84 (2021), 979–999. https://doi.org/10.1007/s00245-021-09791-7 doi: 10.1007/s00245-021-09791-7
    [18] L. E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl., 77 (1998), 317–354. https://doi.org/10.1016/S0021-7824(98)80102-5 doi: 10.1016/S0021-7824(98)80102-5
    [19] Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman- Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201–208. https://doi.org/10.1016/j.amc.2014.06.082 doi: 10.1016/j.amc.2014.06.082
    [20] X. J. Chen, Y. F. Li, Structural stability on the boundary coefficient of the thermoelastic equations of type III, Mathematics, 10 (2022), 366. https://doi.org/10.3390/math10030366 doi: 10.3390/math10030366
    [21] D. A. Nield, A. Bejan, Convection in Porous Media, Springer-Verlag, New York, 1992.
    [22] C. O. Horgan, Decay estimates for the biharmonic equation with applications to Saint-Venant principles in plane elasticity and Stokes flow, Q. Appl. Math., 47 (1989), 147–157. https://doi.org/10.1090/qam/987903 doi: 10.1090/qam/987903
    [23] Y. Liu, Y. Du, C. H. Lin, Convergence and continuous dependence results for the Brinkman equations, Appl. Math. Comput., 215 (2010), 4443–4455. https://doi.org/10.1016/j.amc.2009.12.047 doi: 10.1016/j.amc.2009.12.047
    [24] M. Ciarletta, B. Straughan, V. Tibullo, Structural stability for a thermal convection model with temperature-dependent solubility, Nonlinear Anal. Real World Appl., 22 (2015), 34–43. https://doi.org/10.1016/j.nonrwa.2014.07.012 doi: 10.1016/j.nonrwa.2014.07.012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(904) PDF downloads(47) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog