Loading [Contrib]/a11y/accessibility-menu.js

Modelling HIV superinfection among men who have sex with men

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 October 2015
  • MSC : Primary: 92D30; Secondary: 34D20.

  • Superinfection, a phenomenon that an individual infected by one HIVstrain is re-infected by the second heterologous HIV strain, occursin HIV infection. A mathematical model is formulated to examine howsuperinfection affects transmission dynamics of drugsensitive/resistant strains. Three reproduction numbers are defined:reproduction numbers $R_r$ and $R_s$ for drug-resistant anddrug-sensitive strains, respectively, and the invasion reproductionnumber $R_s^r$. The disease-free equilibrium always exists and islocally stable when the larger of $R_s$ and $R_r$ is less thanone. The drug resistant strain-only equilibrium is locally stable when$R_r>1$ and $R_s^r<1$. Numerical studies show that as thesuperinfection coefficient of the sensitive strain increases thesystem may (1) change to bistable states of disease-free equilibriumand the coexistence state from the stable disease-freeequilibrium under no superinfection; (2) experience the stable resistant-strain onlyequilibrium, the bistable states of resistant-strain onlyequilibrium and the coexistence state, and the stable coexistencestate in turn. This implies that superinfection of the sensitive strain isbeneficial for two strains to coexist. While superinfection ofthe resistant strain makes resistant strain more likely to be sustained.The findings suggest that superinfection induces the complicateddynamics, and brings more difficulties in antiretroviral therapy.

    Citation: Xiaodan Sun, Yanni Xiao, Zhihang Peng. Modelling HIV superinfection among men who have sex with men[J]. Mathematical Biosciences and Engineering, 2016, 13(1): 171-191. doi: 10.3934/mbe.2016.13.171

    Related Papers:

    [1] Romulus Breban, Ian McGowan, Chad Topaz, Elissa J. Schwartz, Peter Anton, Sally Blower . Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses. Mathematical Biosciences and Engineering, 2006, 3(3): 459-466. doi: 10.3934/mbe.2006.3.459
    [2] Andrew Omame, Sarafa A. Iyaniwura, Qing Han, Adeniyi Ebenezer, Nicola L. Bragazzi, Xiaoying Wang, Woldegebriel A. Woldegerima, Jude D. Kong . Dynamics of Mpox in an HIV endemic community: A mathematical modelling approach. Mathematical Biosciences and Engineering, 2025, 22(2): 225-259. doi: 10.3934/mbe.2025010
    [3] Gigi Thomas, Edward M. Lungu . A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences and Engineering, 2010, 7(4): 871-904. doi: 10.3934/mbe.2010.7.871
    [4] Brandy Rapatski, Juan Tolosa . Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences and Engineering, 2014, 11(3): 599-619. doi: 10.3934/mbe.2014.11.599
    [5] Brandy Rapatski, James Yorke . Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences and Engineering, 2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135
    [6] Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau . What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences and Engineering, 2014, 11(5): 1065-1090. doi: 10.3934/mbe.2014.11.1065
    [7] Gesham Magombedze, Winston Garira, Eddie Mwenje . Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: The role of fusion inhibitors in HAART. Mathematical Biosciences and Engineering, 2008, 5(3): 485-504. doi: 10.3934/mbe.2008.5.485
    [8] Tinevimbo Shiri, Winston Garira, Senelani D. Musekwa . A two-strain HIV-1 mathematical model to assess the effects of chemotherapy on disease parameters. Mathematical Biosciences and Engineering, 2005, 2(4): 811-832. doi: 10.3934/mbe.2005.2.811
    [9] Damilola Olabode, Libin Rong, Xueying Wang . Stochastic investigation of HIV infection and the emergence of drug resistance. Mathematical Biosciences and Engineering, 2022, 19(2): 1174-1194. doi: 10.3934/mbe.2022054
    [10] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
  • Superinfection, a phenomenon that an individual infected by one HIVstrain is re-infected by the second heterologous HIV strain, occursin HIV infection. A mathematical model is formulated to examine howsuperinfection affects transmission dynamics of drugsensitive/resistant strains. Three reproduction numbers are defined:reproduction numbers $R_r$ and $R_s$ for drug-resistant anddrug-sensitive strains, respectively, and the invasion reproductionnumber $R_s^r$. The disease-free equilibrium always exists and islocally stable when the larger of $R_s$ and $R_r$ is less thanone. The drug resistant strain-only equilibrium is locally stable when$R_r>1$ and $R_s^r<1$. Numerical studies show that as thesuperinfection coefficient of the sensitive strain increases thesystem may (1) change to bistable states of disease-free equilibriumand the coexistence state from the stable disease-freeequilibrium under no superinfection; (2) experience the stable resistant-strain onlyequilibrium, the bistable states of resistant-strain onlyequilibrium and the coexistence state, and the stable coexistencestate in turn. This implies that superinfection of the sensitive strain isbeneficial for two strains to coexist. While superinfection ofthe resistant strain makes resistant strain more likely to be sustained.The findings suggest that superinfection induces the complicateddynamics, and brings more difficulties in antiretroviral therapy.


    [1] J. Allergy. Clin. Immun., 112 (2003), 829-835.
    [2] B. Math. Biol., 72 (2010), 1294-1314.
    [3] Plos Med., 3 (2006), e124.
    [4] AIDS, 15 (2001), 1181-1183.
    [5] Science, 287 (2000), 650-654.
    [6] J. Theor. Biol., 263 (2010), 169-178.
    [7] J. Virol., 79 (2005), 10701-10708.
    [8] Lancet, 349 (1996), 1868-1873.
    [9] J. Math. Biol., 28 (1990), 365-382.
    [10] AIDS, 13 (1999), S61-S72.
    [11] J. Virol., 70 (1996), 7013-7029.
    [12] J. Infect. Dis., 188 (2003), 397-405.
    [13] Lancet, 363 (2004), 619-622.
    [14] Bikh$\brevea$user, Boston, 1982.
    [15] J. Virol., 74 (2000), 1234-1240.
    [16] New. Engl. J. Med., 347 (2002), 731-736.
    [17] AIDS, 17 (2003), F11-F16.
    [18] J. Virol. 71 (1997), 7088-7091.
    [19] Discrete. Dyn. Nat. Soc., (2012), 162527, 13 pages.
    [20] BMC Public Health, 9 (2009), S1-S10.
    [21] J. Virol., 72 (1998), 7632-7637.
    [22] J. Roy. Soc. Interface, 5 (2008), 3-13.
    [23] J. Acq. immun. Def. Synd., 42 (2006), 12-18.
    [24] Plos Pathog., 3 (2007), e177.
    [25] AIDS Res. Hum. Retrov., 24 (2008), 1221-1224.
    [26] Math. Popul. Stud., 8 (2000), 205-229.
    [27] Clin. Infect. Dis., 50 (2010), 1309-1315.
    [28] BioSystems, 108 (2012), 1-13.
    [29] J. Virol., 76 (2002), 7444-7452.
    [30] J. Infect. Dis, 206 (2012), 267-274.
    [31] Clin. Infect. Dis., 37 (2003), 1112-1118.
    [32] J. Biol. Dyn., 2 (2008), 323-345.
    [33] J. Infect. Dis., 192 (2005), 438-444.
    [34] J. Amer. Med. Assoc., 292 (2004), 1177-1178.
    [35] BioMed Res. Int., 2013 (2013), Article ID 413260, 18 pages.
    [36] J. Virol., 73 (1999), 6810-6820.
    [37] J. Virol., 78 (2004), 94-103.
    [38] Plos One, 2 (2007), e152.
    [39] Theor. Popul. Biol., 46 (1994), 1-31.
    [40] Math. Biosci., 180 (2002), 29-48.
    [41] AIDS, 11 (1997), 1249-1254.
    [42] Springer, Berlin, 1970.
    [43] Curr. HIV. Res., 9 (2011), 103-111.
    [44] PNAS, 103 (2006), 14228-14233.
    [45] Lancet, 372 (2008), 314-320.
    [46] Plos one, 8 (2013), e54917.
    [47] Math. Biosci., 197 (2005), 153-172.
    [48] Math. Method. Appl. Sci., 36 (2012), 234-248.
  • This article has been cited by:

    1. Peng Wu, Hongyong Zhao, MODELING AND DYNAMICS OF HIV TRANSMISSION AMONG HIGH-RISK GROUPS IN GUANGZHOU CITY, CHINA, 2020, 10, 2156-907X, 1561, 10.11948/20190252
    2. Kevin D. Dieckhaus, Toan H. Ha, Stephen L. Schensul, Avina Sarna, Modeling HIV Transmission from Sexually Active Alcohol-Consuming Men in ART Programs to Seronegative Wives, 2020, 19, 2325-9582, 232595822095228, 10.1177/2325958220952287
    3. Min Lu, Yaqin Shu, Jicai Huang, Shigui Ruan, Xinan Zhang, Lan Zou, Modelling homosexual and heterosexual transmissions of hepatitis B virus in China, 2021, 15, 1751-3758, 177, 10.1080/17513758.2021.1896797
    4. Matthew A. Ogunniran, Mohammed O. Ibrahim, Application of Elzaki Transform Method for Solving and Interpreting HIV Superinfection Model, 2023, 17, 2074-1278, 1, 10.46300/91014.2023.17.1
    5. M. A. Ogunniran, M. O. Ibrahim, Sensitivity Analysis of a HIV Superinfection Model, 2024, 8, 2522-9400, 431, 10.59573/emsj.8(3).2024.32
    6. Xiaodan Sun, Weike Zhou, Yuhua Ruan, Guanghua Lan, Qiuying Zhu, Yanni Xiao, Perceived risk induced multiscale model: Coupled within-host and between-host dynamics and behavioral dynamics, 2025, 599, 00225193, 111998, 10.1016/j.jtbi.2024.111998
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2994) PDF downloads(639) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog