This paper is concerned with a mixed $ p $-Laplacian boundary value problem involving right-sided and left-sided fractional derivatives and left-sided integral operators with respect to a power function. We prove the uniqueness of positive solutions for the given problem for the cases $ 1 < p \le 2 $ and $ p > 2 $ by applying an efficient novel approach together with the Banach contraction mapping principle. Estimates for Green's functions appearing in the solution of the problem at hand are also presented. Examples are given to illustrate the obtained results.
Citation: Ahmed Alsaedi, Madeaha Alghanmi, Bashir Ahmad, Boshra Alharbi. Uniqueness results for a mixed $ p $-Laplacian boundary value problem involving fractional derivatives and integrals with respect to a power function[J]. Electronic Research Archive, 2023, 31(1): 367-385. doi: 10.3934/era.2023018
This paper is concerned with a mixed $ p $-Laplacian boundary value problem involving right-sided and left-sided fractional derivatives and left-sided integral operators with respect to a power function. We prove the uniqueness of positive solutions for the given problem for the cases $ 1 < p \le 2 $ and $ p > 2 $ by applying an efficient novel approach together with the Banach contraction mapping principle. Estimates for Green's functions appearing in the solution of the problem at hand are also presented. Examples are given to illustrate the obtained results.
[1] | X. Liu, M. Jia, W. Ge, The method of lower and upper solutions for mixed fractional four-point boundary value problem with $p$-Laplacian operator, Appl. Math. Lett., 65 (2017), 56–62. https://doi.org/10.1016/j.aml.2016.10.001 doi: 10.1016/j.aml.2016.10.001 |
[2] | C. Bai, Existence and uniqueness of solutions for fractional boundary value problems with $p$-Laplacian operator, Adv. Differ. Equations, 4 (2018), 12. https://doi.org/10.1186/s13662-017-1460-3 doi: 10.1186/s13662-017-1460-3 |
[3] | S. Wang, Z. Bai, Existence and uniqueness of solutions for a mixed $p$-Laplace boundary value problem involving fractional derivatives, Adv. Differ. Equations, 694 (2020), 9. https://doi.org/10.1186/s13662-020-03154-2 doi: 10.1186/s13662-020-03154-2 |
[4] | J. Tan, M. Li, Solutions of fractional differential equations with $p$-Laplacian operator in Banach spaces, Bound. Value Probl., 15 (2018), 13. https://doi.org/10.1186/s13661-018-0930-1 doi: 10.1186/s13661-018-0930-1 |
[5] | M. M. Matar, A. A. Lubbad, J. Alzabut, On $p$-Laplacian boundary value problems involving Caputo–Katugampula fractional derivatives, Math. Methods Appl. Sci., (2020). https://doi.org/10.1002/mma.6534 |
[6] | M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the $p$-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equations, 68 (2021), 18. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9 |
[7] | W. Dai, Z. Liu, P. Wang, Monotonicity and symmetry of positive solutions to fractional $p$-Laplacian equation, Commun. Contemp. Math., 24 (2022), 17. https://doi.org/10.1142/S021919972150005X doi: 10.1142/S021919972150005X |
[8] | R. Luca, On a system of fractional differential equations with $p$-Laplacian operators and integral boundary conditions, Rev. Roumaine Math. Pures Appl., 66 (2021), 749–766. |
[9] | Q. Lou, Y. Qin, F. Liu, The existence of constrained minimizers related to fractional $p$-Laplacian equations, Topol. Methods Nonlinear Anal., 58 (2021), 657–676. https://doi.org/10.12775/TMNA.2020.079 doi: 10.12775/TMNA.2020.079 |
[10] | J. R. Graef, S. Heidarkhani, L. Kong, S. Moradi, Three solutions for impulsive fractional boundary value problems with $p$-Laplacian, Bull. Iran. Math. Soc., 48 (2022), 1413–1433. https://doi.org/10.1007/s41980-021-00589-5 doi: 10.1007/s41980-021-00589-5 |
[11] | B. Sun, W. Jiang, S. Zhang, Solvability of fractional differential equations with $p$-Laplacian and functional boundary value conditions at resonance, Mediterr. J. Math., 19 (2022), 18. https://doi.org/10.1007/s00009-021-01753-1 doi: 10.1007/s00009-021-01753-1 |
[12] | B. Ahmad, J. Henderson, R. Luca, Boundary Value Problems for Fractional Differential Equations and Systems, Trends in Abstract and Applied Analysis, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2021. |
[13] | D. Baleanu, G. C. Wu, S.D Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals, 102 (2017), 99–105. https://doi.org/10.1016/j.chaos.2017.02.007 doi: 10.1016/j.chaos.2017.02.007 |
[14] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607–2619. https://doi.org/10.22436/jnsa.010.05.27 doi: 10.22436/jnsa.010.05.27 |
[15] | B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava, S. K. Ntouyas, The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics, 7 (2019), 533. https://doi.org/10.3390/math7060533 doi: 10.3390/math7060533 |
[16] | S. K. Ntouyas, B. Ahmad, M. Alghanmi, A. Alsaedi, Generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions, Topol. Method. Nonlinear Anal., 54 (2019), 1051–1073. https://doi.org/10.12775/TMNA.2019.035 doi: 10.12775/TMNA.2019.035 |
[17] | A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113–120. https://doi.org/10.1016/j.aml.2018.12.006 doi: 10.1016/j.aml.2018.12.006 |
[18] | B. Ahmad, M. Alghanmi, A. Alsaedi, Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50 (2020), 1901–1922. https://doi.org/10.1216/rmj.2020.50.1901 doi: 10.1216/rmj.2020.50.1901 |
[19] | Y. Li, Y. Liu, Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives, AIMS Math., 6 (2021), 13119–13142. https://doi.org/10.3934/math.2021758 doi: 10.3934/math.2021758 |
[20] | T. V. An, H. Vu, N. V. Hoa, Finite-time stability of fractional delay differential equations involving the generalized Caputo fractional derivative with non-instantaneous impulses, Math. Methods Appl. Sci., 45 (2022), 4938–4955. https://doi.org/10.1002/mma.8084 doi: 10.1002/mma.8084 |
[21] | R. Singh, A. Wazwaz, An efficient method for solving the generalized Thomas-Fermi and Lane-Emden-Fowler type equations with nonlocal integral type boundary conditions, Int. J. Appl. Comput. Math., 8 (2022), 22. https://doi.org/10.1007/s40819-022-01280-x doi: 10.1007/s40819-022-01280-x |
[22] | N. M. Dien, J. J. Nieto, Lyapunov-type inequalities for a nonlinear sequential fractional BVP in the frame of generalized Hilfer derivatives, Math. Inequal. Appl., 25 (2022), 851–867. https://doi.org/10.7153/mia-2022-25-54 doi: 10.7153/mia-2022-25-54 |
[23] | J. Li, B. Li, Y. Meng, Solving generalized fractional problem on a funnel-shaped domain depicting viscoelastic fluid in porous medium, Appl. Math. Lett., 134 (2022), 108335. https://doi.org/10.1016/j.aml.2022.108335 doi: 10.1016/j.aml.2022.108335 |
[24] | T. V. An, N. D. Phu, N. V. Hoa, A survey on non-instantaneous impulsive fuzzy differential equations involving the generalized Caputo fractional derivative in the short memory case, Fuzzy Set. Syst., 443 (2022), 160–197. https://doi.org/10.1016/j.fss.2021.10.008 doi: 10.1016/j.fss.2021.10.008 |
[25] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993. |
[26] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, Elsevier: {Amsterdam, The Netherlands}, 2006. |
[27] | A. Erdelyi, An integral equation involving Legendre functions, J. Soc. Indust. Appl. Math., 12 (1964), 15–30. https://doi.org/10.1137/0112002 doi: 10.1137/0112002 |
[28] | B. Lupinska, T. Odzijewicz, A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Methods Appl. Sci., 41 (2018), 8985–8996. https://doi.org/10.1002/mma.4782 doi: 10.1002/mma.4782 |
[29] | F. Jiang, X. Xu, Z. Cao, The positive properties of Green's function for fractional differential equations and its applications, Abstr. Appl. Anal., 2013 (2013), 12. https://doi.org/10.1155/2013/531038 doi: 10.1155/2013/531038 |
[30] | X. Liu, M. Jia, X. Xiang, On the solvability of a fractional differential equation model involving the $p$-Laplacian operator, Comput. Math. Appl., 64 (2012), 3267–3275. https://doi.org/10.1016/j.camwa.2012.03.001 doi: 10.1016/j.camwa.2012.03.001 |
[31] | Q. A. Dang, D. Q. Long, T. K. Q. Ngo, A novel efficient method for nonlinear boundary value problems, Numer. Algorithms, 76 (2017), 427–439. https://doi.org/10.1007/s11075-017-0264-6 doi: 10.1007/s11075-017-0264-6 |