The existence of nontrivial solutions of the double phase problem with nonlinear boundary value condition is an important quasilinear problem: we use variational techniques and sum decomposition of a space $ W_0^{1, \xi}(\Omega) $ to prove the existence of infinitely many solutions of the problem considered. Moreover, our conditions are suitable and different from those considered previously.
Citation: Liyan Wang, Jihong Shen, Kun Chi, Bin Ge. On a class of double phase problem with nonlinear boundary conditions[J]. Electronic Research Archive, 2023, 31(1): 386-400. doi: 10.3934/era.2023019
The existence of nontrivial solutions of the double phase problem with nonlinear boundary value condition is an important quasilinear problem: we use variational techniques and sum decomposition of a space $ W_0^{1, \xi}(\Omega) $ to prove the existence of infinitely many solutions of the problem considered. Moreover, our conditions are suitable and different from those considered previously.
[1] | L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $(p, q)$-Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9 |
[2] | V. Bögelein, F. Duzaar, P. Marcellini, Parabolic equations with $p, q$-growth, J. Math. Pures Appl., 100 (2013), 535–563. https://doi.org/10.1016/j.matpur.2013.01.012 doi: 10.1016/j.matpur.2013.01.012 |
[3] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1987), 33. https: //dx.doi.org/10.1070/IM1987v029n01ABEH000958 |
[4] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[5] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997), 105–116. |
[6] | V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. |
[7] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[8] | K. Perera, M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 20 (2018), 1750023. https://doi.org/10.1142/S0219199717500237 doi: 10.1142/S0219199717500237 |
[9] | A. Fiscella, A double phase problem involving Hardy potentials, Appl. Math. Optim., 85 (2022), 45. https://doi.org/10.1007/s00245-022-09847-2 doi: 10.1007/s00245-022-09847-2 |
[10] | W. L. Liu, G. W. Dai, Existence and multiplicity results for double phase problem, J. Differ. Equations, 265 (2018), 4311–4334. https://doi.org/10.1016/j.jde.2018.06.006 doi: 10.1016/j.jde.2018.06.006 |
[11] | L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for $(p, q)$-Laplacian equations with critical exponent in $\mathbb{R}^N$ and negative energy, Calc. Var. Partial Differ. Equations, 60 (2021), 8. https://doi.org/10.1007/s00526-020-01867-6 doi: 10.1007/s00526-020-01867-6 |
[12] | L. Baldelli, R. Filippucci, Existence of solutions for critical $(p, q)$-Laplacian equations in $\mathbb{R}^N$, Commun. Contemp. Math., 9 (2022), 2150109. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091 |
[13] | B. S. Wang, G. L. Hou, B. Ge, Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl., 23 (2021), 11. https://doi.org/10.1007/s11784-021-00847-3 doi: 10.1007/s11784-021-00847-3 |
[14] | B. Ge, Z. Y. Chen, Existence of infinitely many solutions for double phase problem with sign-changing potential, RACSAM, 113 (2019), 3185–3196. https://doi.org/10.1007/s13398-019-00684-7 doi: 10.1007/s13398-019-00684-7 |
[15] | B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007 |
[16] | W. L. Liu, G. W. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 59 (2018), 121503. https://doi.org/10.1063/1.5055300 doi: 10.1063/1.5055300 |
[17] | S. D. Zeng, Y. R. Bai, L. Gasinski, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differ. Equations, 59 (2020), 176. https://doi.org/10.1007/s00526-020-01841-2 doi: 10.1007/s00526-020-01841-2 |
[18] | L. Gasinski, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differ. Equations, 268 (2020), 4183–4193. https://doi.org/10.1016/j.jde.2019.10.022 doi: 10.1016/j.jde.2019.10.022 |
[19] | L. Gasinski, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal., 195 (2020), 111739. https://doi.org/10.1016/j.na.2019.111739 doi: 10.1016/j.na.2019.111739 |
[20] | N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys., 71 (2020), 15. https://doi.org/10.1007/s00033-019-1239-3 doi: 10.1007/s00033-019-1239-3 |
[21] | A. Crespo-Blanco, L. Gasinski, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: existence and uniqueness, J. Differ. Equations, 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[22] | N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Existence and multiplicity of solutions for double-phase Robin problems, Bull. London Math. Soc., 52 (2020), 546–560. https://doi.org/10.1112/blms.12347 doi: 10.1112/blms.12347 |
[23] | N. S. Papageorgiou, C. Vetro, F. Vetro, Solutions for parametric double phase Robin problems, Asymptotic Anal., 121 (2021), 159–170. https://doi.org/10.3233/ASY-201598 doi: 10.3233/ASY-201598 |
[24] | A. Crespo-Blanco, N. S. Papageorgiou, P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Methods Appl. Sci., 45 (2022), 2276–2298. https://doi.org/10.1002/mma.7924 doi: 10.1002/mma.7924 |
[25] | C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, Adv. Nonlinear Stud., 21 (2021), 809–825. https://doi.org/10.1515/ans-2021-2143 doi: 10.1515/ans-2021-2143 |
[26] | L. Gasinski, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differ. Equations, 274 (2021), 1037–1066. https://doi.org/10.1016/j.jde.2020.11.014 doi: 10.1016/j.jde.2020.11.014 |
[27] | N. Cui, H. R. Sun, Existence and multiplicity results for double phase problem with nonlinear boundary condition, Nonlinear Anal. Real World Appl., 60 (2021), 103307. https://doi.org/10.1016/j.nonrwa.2021.103307 doi: 10.1016/j.nonrwa.2021.103307 |
[28] | O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differ. Equations, 245 (2008), 3628–3638. https://doi.org/10.1016/j.jde.2008.02.035 doi: 10.1016/j.jde.2008.02.035 |
[29] | A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. Theory Methods Appl., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011 |
[30] | J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, 1983. |
[31] | A. Benkirane, M. S. El Vally, Variational inequalities in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 787–811. https://doi.org/10.36045/bbms/1420071854 doi: 10.36045/bbms/1420071854 |
[32] | X. Fan, C. X. Guan, Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal. Theory Methods Appl., 73 (2010), 163–175. https://doi.org/10.1016/j.na.2010.03.010 doi: 10.1016/j.na.2010.03.010 |
[33] | S. El Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the $p$-Laplacian, Adv. Nonlinear Anal., 11 (2022), 304–320. https://doi.org/10.1515/anona-2020-0193 doi: 10.1515/anona-2020-0193 |
[34] | M. Willem, Minimax Theorems, Birkhauser, Basel, 1996. |
[35] | T. Bartsch, Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal. Theory Methods Appl., 20 (1993), 1205–1216. https://doi.org/10.1016/0362-546X(93)90151-H doi: 10.1016/0362-546X(93)90151-H |
[36] | P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. Theory Methods Appl., 7 (1983), 981–1012. https://doi.org/10.1016/0362-546X(83)90115-3 doi: 10.1016/0362-546X(83)90115-3 |