Stemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on $ \mathbb C $ to the quadratic Fock-Sobolev spaces on $ \mathbb C $.
Citation: Xiaofen Lv, Jie Xiao, Cheng Yuan. $ \bar{\partial} $-equation look at analytic Hilbert's zero-locus theorem[J]. Electronic Research Archive, 2022, 30(1): 168-178. doi: 10.3934/era.2022009
Stemming from the Pythagorean Identity $ \sin^2z+\cos^2z = 1 $ and Hörmander's $ L^2 $-solution of the Cauchy-Riemann's equation $ \bar{\partial}u = f $ on $ \mathbb C $, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on $ \mathbb C $ to the quadratic Fock-Sobolev spaces on $ \mathbb C $.
[1] | D. Hilbert, Über die vollen Invariantesysteme, Math. Ann., 42 (1893), 313–373. https://doi.org/10.1007/BF01444162 doi: 10.1007/BF01444162 |
[2] | G. Hermann, Die frage der endlich vielen schritte in der theorie der polynomideale, Math. Ann., 95 (1926), 736–788. https://doi.org/10.1007/BF01206635 doi: 10.1007/BF01206635 |
[3] | D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math., 72 (1983), 407–464. https://doi.org/10.1007/BF01398396 doi: 10.1007/BF01398396 |
[4] | W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. Math., 126 (1987), 577–591. https://doi.org/10.2307/1971361 doi: 10.2307/1971361 |
[5] | J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc., 4 (1988), 963–975. https://doi.org/10.1090/S0894-0347-1988-0944576-7 doi: 10.1090/S0894-0347-1988-0944576-7 |
[6] | H. Kwon, A. Netyanun, T. Trent, An analytic approach to the degree bound in the Nullstellensatz, Proc. Amer. Math. Soc., 144 (2016), 1145–1152. https://doi.org/10.1090/proc/12781 doi: 10.1090/proc/12781 |
[7] | K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., Vol. 263, Springer, New York, 2012. |
[8] | H. R. Cho, K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263 (2012), 2483–2506. https://doi.org/10.1016/j.jfa.2012.08.003 doi: 10.1016/j.jfa.2012.08.003 |
[9] | B. Berndtsson, Weighted estimates for $\bar{\partial}$ in domains in $\mathbb C$, Duke Math. J., 66 (1992), 239–255. https://doi.org/10.1215/S0012-7094-92-06607-5 doi: 10.1215/S0012-7094-92-06607-5 |
[10] | B. Berndtsson, An Introduction to Things $\bar{\partial}$, Analytic and Algebraic Geometry, McNeal, Amer. Math. Soc. Providence RI 2010. 7–76. https: //doi.org/10.1090/PCMS/017/02 |
[11] | H. Hedenmalm, On Hörmander's solution of the $\bar\partial$-equation. I, Math. Z., 281 (2015), 349–355. https://doi.org/10.1007/s00209-015-1487-7 doi: 10.1007/s00209-015-1487-7 |
[12] | L. Hörmander, An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973. |
[13] | D. P. Banjade, Wolff's ideal theorem on $Q_p$ spaces, Rocky Mountain J. Math., 49 (2019), 2121–2133. https://doi.org/10.1216/RMJ-2019-49-7-2121 doi: 10.1216/RMJ-2019-49-7-2121 |
[14] | J. Xiao, C. Yuan, Cauchy-Riemann $\bar{\partial}$-equations with some applications, Preprint (submitted), 2021. |