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Abstract: Stemming from the Pythagorean Identity sin2 z + cos2 z = 1 and Hörmander’s L2-solution
of the Cauchy-Riemann’s equation ∂̄u = f on C, this article demonstrates a corona-type principle
which exists as a somewhat unexpected extension of the analytic Hilbert’s Nullstellensatz on C to the
quadratic Fock-Sobolev spaces on C.
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1. Description of Theorem 1.1

As one of the fundamentals of algebraic-complex geometry, the analytic Hilbert’s Nullstellensatz
(either theorem of zeros or zero-locus theorem) [1] on the finite complex plane C asserts that for finitely
many analytic polynomials {p j}

n
j=1 without common zeros in C,

∃ finitely many analytic polynomials {q j}
n
j=1 such that

n∑
j=1

p jq j = 1. (1)

This celebrated principle has been improved and extended for more than a century; see e.g., Her-
mann [2], Masser-Wüstholz [3], Brownawell [4], Kollár [5], and Kwon-Neryanun-Trent [6] whose
Lemma 1.4 especially indicates that an entire function Y is a polynomial on C if and only if
lim|z|→∞ |z|−m|Y(z)| = 0 for some positive integer m.

Meanwhile, in complex trigonometry, the Pythagorean Identity on C states that

sin2 z + cos2 z =
(
eiz − e−iz

2i

)2

+

(
eiz + e−iz

2

)2

= 1 ∀ z ∈ C, (2)
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and sin z & cos z have no common zero as graphically shown below
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Although the entire functions sin z & cos z are not analytic polynomials, they can be appropriately
approximated by analytic polynomials and satisfy:

(sin z)g1(z) + (cos z)g2(z) = 1;{
g1(z) = sin z, g2(z) = cos z

}
;

supz∈C
(
|g1(z)| + |g2(z)|

)
e−|z| < ∞;

| sin z| + | cos z| ≥ 1,

where this last inequality is geometric due to the basic fact that the sum of the lengths of the adjacent
& opposite sides BC & CA is not less than the length of the hypotenuse AB in the right triangle △ABC
drawn below

B C

A
1

sin ∠ABC

cos ∠ABC

sin ∠ABC + cos ∠ABC ≥ 1

The previous two-fold observation actually inspires us to extend the analytic Hilbert’s Nullstellen-
satz to some entire function spaces.

For α > 0, let F 2
α be the Fock-Hilbert space of all L2(λα)-integrable entire functions (or analytic

functions on C) with the inner product

⟨ f , g⟩F 2
α
=

∫
C

f (z)g(z) dλα(z) ∀ entire function pair { f , g},

where
dλα(z) = απ−1e−α|z|

2
dA(z) = απ−1e−α|z|

2
dxdy ∀ z = x + iy ∈ C.
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Moreover, for a nonnegative integer m, let F 2
α,m be the quadratic m-order Fock-Sobolev space of all

entire functions obeying

∥ f ∥2
F 2
α,m
=

∫
C

|zm f (z)|2e−α|z|
2
dA(z) < ∞;

Evidently,
α1 < α2 =⇒ F

2
α1,m ⊆ F

2
α2,m;

see also Zhu’s book [7] for more information.
Since all analytic polynomials are dense in F 2

α,m, as a somewhat unexpected variant of Eqs (1) and
(2) we discover the following corona-type principle.

Theorem 1.1. Let 
α ∈ (0,∞);
m, n ∈ {1, 2, 3, ...};
f1, ..., fn ∈ F

2
α,1.

If g is an entire function with
n∑

j=1

| f j| ≥ |g|m, (3)

then

∃ g1, ..., gn ∈ F
2

2mα,1 such that
n∑

j=1

f jg j = g3m. (4)

Especially, if
n∑

j=1

| f j| ≥ 1, (5)

then

∃ g1, ..., gn ∈ F
2

2mα,1 such that
n∑

j=1

f jg j = 1. (6)

2. Demonstration of Theorem 1.1

For α ∈ (0,∞), let

C ∋ z 7→

 f (z) =
∑∞

n=0 anzn

g(z) =
∑∞

n=0 bnzn
be two entire functions with their derivatives

{
f ′(z), g′(z)

}
.

Then some elementary calculations derive the following four formulae:

∫
C

f (z)g(z)dλα(z) =
∑∞

n=0 α
−nanbnn!;∫

C
z f (z)zg(z)dλα(z) =

∑∞
n=0 α

−n−1anbn(n + 1)!;∫
C

f ′(z)g′(z)dλα(z) =
∑∞

n=1 α
1−nanbnn2(n − 1)! = α

∫
C

f (z)g(z)
(
α|z|2 − 1

)
dλα(z);∫

C
z f (z)zg(z)dλα(z) = α−2

∫
C

f ′(z)g′(z)dλα(z) + α−1
∫
C

f (z)g(z)dλα(z).
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Consequently,

F 2
α,1 ⊆ F

2
α with ∥ f ∥2α,1 =

∫
C

| f ′(z)|2dλα(z) =⇒ ∥ f ∥2
F 2
α,1
= α−2∥ f ∥2α,1 + α

−1∥ f ∥2
F 2
α
.

Moreover, a modification of Cho-Zhu’s statement on [8, p. 2496] gives the following pointwise esti-
mation

f ∈ F 2
α,1 =⇒ | f (z)| ≲ ∥ f ∥F 2

α,1
(1 + |z|)−1e2−1α|z|2 ∀ z ∈ C. (1)

Lemma 2.1. For 

z = x + iy ∈ C;
1 < p < ∞;
p′ = p(p − 1)−1;
C2

c = {all compactly-supported C2-functions: C→ C};
Ap(e−2ϕ) =

{
all analytic functions in Lp(e−2ϕ)

}
,

let ϕ : C→ R & g : C→ C be C2-smooth with
0 ≤ ∆ϕ(z) = 4−1(∂2

x + ∂
2
y
)
ϕ(z) = ∂z∂̄zϕ(z) = ∂∂̄ϕ(z);

∂ = ∂z = 2−1
(
∂
∂x − i ∂

∂y

)
;

∂̄ = ∂z̄ = 2−1
(
∂
∂x + i ∂

∂y

)
;

∂̄∗2ϕg(z) = −e2ϕ(z)∂
(
g(z)e−2ϕ(z)).

(2)

(i) Weighted (Lp, ∂̄)-estimation - not only for a given function f on C there exists a weak solution
u ∈ Lp(e−2ϕ) to ∂̄u = f in the sense of∫

C

u∂̄∗2ϕge−2ϕdA =
∫
C

f ḡe−2ϕdA ∀ g ∈ C2
c (3)

if and only if

sup
g∈C2

c

∣∣∣∫
C

f ḡe−2ϕ dA
∣∣∣(∫

C
|∂̄∗2ϕg|

p′e−2ϕdA
) 1

p′
< ∞, (4)

but also Eq (4) holds for all f ∈ Lp((∆(2ϕ)e2ϕ)−1) if and only if∫
C

|g|p
′(
∆(2ϕ)

) p′
p e−2ϕdA ≤

∫
C

|∂̄∗2ϕg|
p′e−2ϕdA ∀ g ∈ C2

c . (5)

(ii) Uniqueness up to entire Lp(e−2ϕ)-functions - arbitrary two solutions in (i) differ by a function
h ∈ Ap(e−2ϕ) with ∫

C

|h|pe−2ϕdA ≤ 2p+1
∫
C

| f |p
(
∆(2ϕ)e2ϕ)−1dA.
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(iii) Weighted (Lp, ∂̄)-Poincaré inequality - if u ∈ C1 satisfies (i) above and the Lp(e−2ϕ)-minimality
below ∫

C

|u|pe−2ϕdA = inf
h∈Ap(e−2ϕ)

∫
C

|u + h|pe−2ϕdA, (6)

then ∫
C

|u|pe−2ϕdA ≤
∫
C

|∂̄u|p
(
e2ϕ∆(2ϕ)

)−1dA, (7)

and consequently, if u ∈ C1 enjoys the case p = 2 of (i) and the L2(e−2ϕ)-orthogonality∫
C

uh̄e−2ϕdA = 0 ∀ h ∈ A2(e−2ϕ), (8)

then Eq (7) holds for p = 2.

(iv) Weighted (L2, ∂̄)-estimation is always available.

(v) Uniqueness - if

∃ ϵ ∈ (0, 2) such that
∫
C

(
(1 + |z|)ϵ−2e2ϕ(z))2 dA(z) < ∞, (9)

then the solution in (iv) is unique.

Proof. (i) This part is motivated by Berndtsson’s [9, Theorems 2–3]. But, the argument comes from an
adjustment of the case p = 2 presented in Berndtsson’s [10, Proposition 1.1].

Suppose that for a given function f on C there exists a weak solution u ∈ Lp(e−2ϕ) to ∂̄u = f in the
sense of Eq (3). Then the Hölder inequality derives∣∣∣∣∣∫

C

f ḡe−2ϕdA
∣∣∣∣∣ = ∣∣∣∣∣∫

C

u∂̄∗2ϕge−2ϕdA
∣∣∣∣∣ ≤ (∫

C

|u|pe−2ϕdA
) 1

p
(∫
C

|∂̄∗2ϕg|
p′e−2ϕdA

) 1
p′

∀ g ∈ C2
c .

Hence Eq (4) holds for the previous function f . Conversely, if Eq (4) is valid for a given function f on
C, then

S ϕ =
{
∂̄∗2ϕg : g ∈ C2

c
}

is a subspace of Lp′(e−2ϕ), and hence the given function f induces the following bounded antilinear
functional on S ϕ:

L f (∂̄∗2ϕg) =
∫
C

f ḡe−2ϕdA.

This, along with the Hahn-Banach extension theorem, ensures an extension of L f from S ϕ to Lp′(e−2ϕ).
Consequently, the Riesz-type representation theorem for the dual of Lp′(e−2ϕ) produces a function

u ∈ [Lp′(e−2ϕ)]∗ = Lp(e−2ϕ)

such that

L f (G) =
∫
C

uGe−2ϕdA ∀ G ∈ Lp′(e−2ϕ).
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Upon taking G = ∂̄∗2ϕg, we find that the last function u ∈ Lp(e−2ϕ) is a weak solution to ∂̄u = f in the
sense of Eq (3).

Moreover, if Eq (4) holds for all f ∈ Lp((∆(2ϕ)e2ϕ)−1), then an application of the duality

[Lp(e−2ϕ)]∗ = Lp′(e−2ϕ)

under the pairing

⟨ f , g⟩2ϕ =
∫
C

f ḡe−2ϕdA =
∫
C

((
∆(2ϕ)

)− 1
p f

)((
∆(2ϕ)

) 1
p ḡ

)
e−2ϕ dA

derives Eq (5). Evidently, if Eq (5) holds, then ⟨ f , g⟩2ϕ deduces that Eq (4) is valid for all f ∈
Lp((∆(2ϕ)e2ϕ)−1).

As an aside of the preceding demonstration, we achieve that for any f ∈ Lp((∆(2ϕ)e2ϕ)−1) there
exists a weak solution u ∈ Lp(e−2ϕ) of ∂̄u = f with∫

C

|u|pe−2ϕdA ≤
∫
C

| f |p
(
∆(2ϕ)

)−1e−2ϕdA

if and only if Eq (5) holds.
(ii) This follows from the fact that ∂̄u = 0 if and only if u is analytic.
(iii) This comes from a modification of the argument for Berndtsson’s [10, Corollary 1.4]. Indeed,

without loss of generality, we may assume∫
C

|∂̄u|p
(
e2ϕ∆(2ϕ)

)−1dA < ∞.

Now, the verification of (i) ensures that

∂̄v = ∂̄u ∈ Lp((∆(2ϕ)e2ϕ)−1)
has a weak solution v enjoying the inequality∫

C

|v|pe−2ϕ dA ≤
∫
C

|∂̄u|p
(
∆(2ϕ)

)−1e−2ϕ dA. (10)

Note that (ii) produces a function h† ∈ Ap(e−2ϕ) such that v = u + h†. So Eqs (6) & (10) imply∫
C

|u|pe−2ϕ dA ≤
∫
C

|u + h†|pe−2ϕ dA ≤
∫
C

|∂̄u|p
(
∆(2ϕ)

)−1e−2ϕ dA,

as desired in Eq (7).
Especially, if Eq (8) is valid, then a combination of

∂̄(v + h) = ∂̄u ∀ h ∈ A2
ϕ

and the closedness of A2(e−2ϕ) in L2(e−2ϕ) yields a function h‡ ∈ A2(e−2ϕ) such that
∫
C
|v + h‡|2e−2ϕdA = infh∈A2

ϕ

∫
C
|v + h|2e−2ϕdA ≤

∫
C
|v|2e−2ϕdA;∫

C
(v + h‡ − u)h̄e−2ϕdA = 0 ∀ h ∈ A2(e−2ϕ).

(11)
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Upon noticing ∂̄(v + h‡ − u) = 0, we obtain

v + h‡ − u ∈
(
A2(e−2ϕ)

)
∩

(
A2(e−2ϕ)

)⊥
= {0} & v + h‡ = u.

As a consequence, u is the L2(e−2ϕ)-minimal solution to ∂̄v = ∂̄u. Thus, the weighted (L2, ∂̄)-Poincaré
inequality follows from the first inequality of Eq (11) and the case p = 2 of Eq (10).

Here it is appropriate to mention that as shown in [10, Theorem 3.3] the case p = 2 of Eq (10) can be
used to establish the following Brunn-Minkowski-type concavity: if D is a convex open subset of the
(n+1)-dimesnional Euclidean space Rn× (−∞,∞) and Dt = {x : (x, t) ∈ D} then the Lebesgue measure
Mn(Dt) satisfies ∂2

t log Mn(Dt) ≤ 0 - i.e.,- the function t 7→ log Mn(Dt) is concave - in particular - so is
t 7→ log A(Dt) = log M2(Dt).

(iv) This is a minor variant of [11, Theorem 1.1] - the well-known Hörmander L2-estimate for the
∂̄-equation presented in [12]. In fact, given f ∈ L2((e2ϕ∆(2ϕ)

)−1) the basic identity (cf. [10, Proposition
1.2]) ∫

C

|g|2
(
∆(2ϕ)

)
e−2ϕdA +

∫
C

|∂̄g|2e−2ϕdA =
∫
C

|∂̄∗2ϕg|
2e−2ϕdA ∀ g ∈ C2

c ,

ensures the second iff-condition of (i) with p = 2∫
C

|g|2
(
∆(2ϕ)

)
e−2ϕdA ≤

∫
C

|∂̄∗2ϕg|
2e−2ϕdA ∀ g ∈ C2

c ,

thereby reaching the existence of a weak solution u to ∂̄u = f with∫
C

|u|2e−2ϕ dA ≤
∫
C

| f |2
(
∆(2ϕ)

)−1e−2ϕ dA.

(v) Such a uniqueness is newly induced by Eq (1). Yet, its proof is similar to the argument for
Hedenmalm’s curvature-orientated uniqueness of the ∂̄-equation in [11, Theorem 1.4]. As a matter of
fact, if u1 & u2 are two solutions in (iv), then u1 − u2 is an entire function on C due to (ii), and hence
log |u1 − u2| is subharmonic on C. This, plus Eq (2), deduces

∆ log
(
|u1 − u2|eϕ

)
= ∆ log |u1 − u2| + ∆ϕ > 0,

and so that
|u1 − u2|eϕ = exp

(
log(|u1 − u2|eϕ)

)
is subharmonic on C. Now, for any

(z0, r) ∈ C ×
(
1 + |z0|,∞

)
,

a combination of Eq (9), the mean-value-inequality for the subharmonic function |u1 − u2|eϕ and the
Cauchy-Schwarz inequality derives

|u1(z0) − u2(z0)|eϕ(z0) ≤ (πr2)−1
∫
|z−z0 |<r

|u1 − u2|eϕ dA

≤ (πr2)−1
∫
|z|<2r−1

|u1 − u2|eϕ dA

Electronic Research Archive Volume 30, Issue 1, 168–178.
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≤ π−1(2r)−ϵ
∫
|z|<2r−1

|u1(z) − u2(z)|eϕ(z)(1 + |z|)ϵ−2 dA(z)

≤ π−1(2r)−ϵ
∫
C

|u1(z) − u2(z)|eϕ(z)(1 + |z|)ϵ−2 dA(z)

≤ π−1(2r)−ϵ
(∫
C

|u1 − u2|
2 dA
e2ϕ

) 1
2
(∫
C

(
(1 + |z|)ϵ−2e2ϕ(z))2 dA(z)

) 1
2

≤ 22π−1(2r)−ϵ
(∫
C

| f |2
dA

(∆ϕ)e2ϕ

) 1
2
(∫
C

(
(1 + |z|)ϵ−2e2ϕ(z))2 dA(z)

) 1
2

.

Letting r → ∞ in the last estimation gives|u1(z0) − u2(z0)|eϕ(z0) = 0;
u1(z0) = u2(z0).

Since z0 is arbitrary, the last equality ensures u1 = u2 on C. □

Argument for Theorem 1.1. Clearly, if g ≡ 1 in (3)–(4), then (5)=⇒(6) follows from Eq (3)=⇒(4)
which is verified as below.

Suppose that (3) is valid. Let φ j =
gm f j∑n
l=1 | fl |

2 ∀ j ∈ {1, ..., n};

H j,k = gmφ j∂̄φk ∀ j, k ∈ {1, ..., n}.

If b j,k is a function solving pointwisely the ∂̄-equation

∂̄b j,k = H j,k, (12)

then each

g j = g2mφ j +

n∑
k=1

(b j,k − bk, j) fk (13)

is an entire function enjoying

n∑
j=1

g j f j = g2m
n∑

j=1

f jφ j +

n∑
k, j=1

(b jk − bk j) fk f j = g3m,

and hence the equation in (4) is met.
Thanks to the smoothness of f1, ..., fn, g, Lemma 2.1(iv) with

ϕ(z) = 2−1(2m − 1)α|z|2

produces a function b j,k such that (12) holds pointwisely with
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∫
C

|b j,k(z)|2e−(2m−1)α|z|2 dA(z) ≤ 2−1
∫
C

|H j,k(z)|2
e−(2m−1)α|z|2

∆ϕ(z)

 dA(z)

=
(
(2m − 1)α

)−1
∫
C

|H j,k(z)|2e−(2m−1)α|z|2 dA(z). (14)

In order to achieve g j ∈ F
2

2mα,1 in (4), in the sequel we employ (12)–(13) to prove
∫
C
|H j,k(z)|2e−(2m−1)α|z|2dA(z) < ∞;∫
C
|zg j(z)|2e−2mα|z|2dA(z) < ∞

(15)

▷ It is easy to get

sup
z∈C
|φ j(z)| = sup

z∈C

∣∣∣∣∣∣∣ gm(z) f j(z)∑n
l=1 | fl(z)|2

∣∣∣∣∣∣∣ = sup
z∈C

 |g(z)|m(∑n
l=1 | fl(z)|2

) 1
2


 | f j(z)|(∑n

l=1 | fl(z)|2
) 1

2

 ≲ 1.

In the above and below, X ≲ Y stands for X ≤ cY for a positive constant c.

– For the case m = 1, we utilize Eqs (1) & (3) to derive∫
C

|zg2m(z)φ j(z)|2e−2mα|z|2 dA(z) ≲
∫
C

|zg2(z)|2e−2α|z|2 dA(z)

≲ ∥g∥2
F 2
α,1

∫
C

|z|2|g(z)|2
(
e2−1α|z|2

1 + |z|

)2

e−2α|z|2 dA(z)

≲ ∥g∥2
F 2
α,1

∫
C

|z|2|g(z)|2(1 + |z|)−2 e−α|z|
2
dA(z)

≲ ∥g∥2
F 2
α,1

∫
C

|z|2|g(z)|2 e−α|z|
2
dA(z)

≲ ∥g∥4
F 2
α,1

≲
n∑

j=1

∥ f j∥
4
F 2
α,1
< ∞.

– For the case m > 1, we utilize Eq (1) - the Hölder inequality - Eq (3) to derive∫
C

|zg2m(z)φ j(z)|2e−2mα|z|2dA(z) ≲ ∥g∥4m
F 2
α,1

∫
C

(1 + |z|)−4m|z|2 dA(z)

≲ ∥gm∥4
F 2
α,1

∫
C

(1 + |z|)−2(2m−1) dA(z)

≲
n∑

j=1

∥ f j∥
4
F 2
α,1
< ∞.

In summary, we always have∫
C

|zg2m(z)φ j(z)|2e−2mα|z|2dA(z) ≲
n∑

j=1

∥ f j∥
4
F 2
α,1
< ∞. (16)

Electronic Research Archive Volume 30, Issue 1, 168–178.
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Now, a straightforward computation gives

∂̄φ j =
gm ∑n

l=1 fl

(
fl ∂ f j − f j ∂ fl

)
(∑n

l=1 | fl|
2)2 .

As evaluated in [13, 14], we have

|∂̄φ j|
2 ≲
|g|2m(∑n

l=1 | fl|
2)2 ∑n

l=1 |∂ fl|
2(∑n

l=1 | fl|
2)4 ≲

∑n
l=1 |∂ fl|

2∑n
l=1 | fl|

2 ,

thereby producing

|H j,k|
2 =

∣∣∣gmφ j∂̄φk

∣∣∣2 ≲ n∑
l=1

|∂ fl|
2.

Clearly, we get ∫
C

|H j,k(z)|2e−(2m−1)α|z|2dA(z) ≲
∫
C

n∑
l=1

|∂ fl(z)|2e−(2m−1)α|z|2dA(z)

≲
n∑

l=1

∥ fl∥
2
F 2
α,1
< ∞, (17)

whence verifying the first inequality of (15).

▷ According to Lemma 2.1(i), there exists b j,k classically resolving (12) with (14), and consequently,
a combination of Eqs (1) & (17) yields∫

C

|zb j,k(z)|2| fk(z)|2e−2mα|z|2dA(z) ≲ ∥ fk∥
2
F 2
α,1

∫
C

|b j,k(z)|2|z|2(1 + |z|)−2e−(2m−1)α|z|2dA(z)

≲ ∥ fk∥
2
F 2
α,1

∫
C

|b j,k(z)|2e−(2m−1)α|z|2dA(z)

≲ ∥ fk∥
2
F 2
α,1

∫
C

|H j,k(z)|2e−(2m−1)α|z|2dA(z)

≲ ∥ fk∥
2
F 2
α,1

n∑
l=1

∥ fl∥
2
F 2
α,1
< ∞. (18)

Since the comparable constants in (18) are independent of { j, k}, the formula (13), along with (16)
& (18), validates the second inequality of (15).
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