Electronic
Research Archive

Research article

$\bar{\partial}$-equation look at analytic Hilbert's zero-locus theorem

Xiaofen $\mathbf{L v}^{1}$, Jie Xiao ${ }^{2, *}$ and Cheng Yuan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Huzhou University, Huzhou, Zhejiang 313000, China
${ }^{2}$ Department of Mathematics and Statistics, Memorial University, St. John's, NL A1C 5S7, Canada
${ }^{3}$ School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, Guangdong 510520, China

* Correspondence: Email: jxiao@mun.ca.

Abstract

Stemming from the Pythagorean Identity $\sin ^{2} z+\cos ^{2} z=1$ and Hörmander's L^{2}-solution of the Cauchy-Riemann's equation $\bar{\partial} u=f$ on \mathbb{C}, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on \mathbb{C} to the quadratic Fock-Sobolev spaces on \mathbb{C}.

Keywords: $\bar{\partial} u=f$; quadratic Fock-Sobolev space; analytic Hilbert's Nullstellensatz

1. Description of Theorem 1.1

As one of the fundamentals of algebraic-complex geometry, the analytic Hilbert's Nullstellensatz (either theorem of zeros or zero-locus theorem) [1] on the finite complex plane \mathbb{C} asserts that for finitely many analytic polynomials $\left\{p_{j}\right\}_{j=1}^{n}$ without common zeros in \mathbb{C},

$$
\begin{equation*}
\exists \text { finitely many analytic polynomials }\left\{q_{j}\right\}_{j=1}^{n} \text { such that } \sum_{j=1}^{n} p_{j} q_{j}=1 \tag{1}
\end{equation*}
$$

This celebrated principle has been improved and extended for more than a century; see e.g., Hermann [2], Masser-Wüstholz [3], Brownawell [4], Kollár [5], and Kwon-Neryanun-Trent [6] whose Lemma 1.4 especially indicates that an entire function Y is a polynomial on \mathbb{C} if and only if $\lim _{|z| \rightarrow \infty}|z|^{-m}|Y(z)|=0$ for some positive integer m.

Meanwhile, in complex trigonometry, the Pythagorean Identity on \mathbb{C} states that

$$
\begin{equation*}
\sin ^{2} z+\cos ^{2} z=\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)^{2}+\left(\frac{e^{i z}+e^{-i z}}{2}\right)^{2}=1 \forall z \in \mathbb{C}, \tag{2}
\end{equation*}
$$

and $\sin z \& \cos z$ have no common zero as graphically shown below

Although the entire functions $\sin z \& \cos z$ are not analytic polynomials, they can be appropriately approximated by analytic polynomials and satisfy:

$$
\left\{\begin{array}{l}
(\sin z) g_{1}(z)+(\cos z) g_{2}(z)=1 \\
\left\{g_{1}(z)=\sin z, g_{2}(z)=\cos z\right\} \\
\sup _{z \in \mathbb{C}}\left(\left|g_{1}(z)\right|+\left|g_{2}(z)\right|\right) e^{-|z|}<\infty ; \\
|\sin z|+|\cos z| \geq 1,
\end{array}\right.
$$

where this last inequality is geometric due to the basic fact that the sum of the lengths of the adjacent \& opposite sides $B C \& C A$ is not less than the length of the hypotenuse $A B$ in the right triangle $\triangle A B C$ drawn below

The previous two-fold observation actually inspires us to extend the analytic Hilbert's Nullstellensatz to some entire function spaces.

For $\alpha>0$, let \mathcal{F}_{α}^{2} be the Fock-Hilbert space of all $L^{2}\left(\lambda_{\alpha}\right)$-integrable entire functions (or analytic functions on \mathbb{C}) with the inner product

$$
\langle f, g\rangle_{\mathcal{F}_{\alpha}^{2}}=\int_{\mathbb{C}} f(z) \overline{g(z)} \mathrm{d} \lambda_{\alpha}(z) \forall \text { entire function pair }\{f, g\},
$$

where

$$
\mathrm{d} \lambda_{\alpha}(z)=\alpha \pi^{-1} e^{-\left.\alpha| |\right|^{2}} \mathrm{dA}(z)=\alpha \pi^{-1} e^{-\alpha|z|^{2}} \mathrm{~d} x \mathrm{~d} y \forall z=x+i y \in \mathbb{C} .
$$

Moreover, for a nonnegative integer m, let $\mathcal{F}_{\alpha, m}^{2}$ be the quadratic m-order Fock-Sobolev space of all entire functions obeying

$$
\|f\|_{\mathcal{F}_{\alpha, m}^{2},}^{2}=\int_{\mathbb{C}}\left|z^{m} f(z)\right|^{2} e^{-\left.\alpha| |\right|^{2}} \mathrm{dA}(z)<\infty ;
$$

Evidently,

$$
\alpha_{1}<\alpha_{2} \Longrightarrow \mathcal{F}_{\alpha_{1}, m}^{2} \subseteq \mathcal{F}_{\alpha_{2}, m}^{2}
$$

see also Zhu's book [7] for more information.
Since all analytic polynomials are dense in $\mathcal{F}_{\alpha, m}^{2}$, as a somewhat unexpected variant of Eqs (1) and (2) we discover the following corona-type principle.

Theorem 1.1. Let

$$
\left\{\begin{array}{l}
\alpha \in(0, \infty) \\
m, n \in\{1,2,3, \ldots\} \\
f_{1}, \ldots, f_{n} \in \mathcal{F}_{\alpha, 1}^{2}
\end{array}\right.
$$

If g is an entire function with

$$
\begin{equation*}
\sum_{j=1}^{n}\left|f_{j}\right| \geq|g|^{m} \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\exists g_{1}, \ldots, g_{n} \in \mathcal{F}_{2 m \alpha, 1}^{2} \text { such that } \sum_{j=1}^{n} f_{j} g_{j}=g^{3 m} . \tag{4}
\end{equation*}
$$

Especially, if

$$
\begin{equation*}
\sum_{j=1}^{n}\left|f_{j}\right| \geq 1 \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\exists g_{1}, \ldots, g_{n} \in \mathcal{F}_{2 m \alpha, 1}^{2} \text { such that } \sum_{j=1}^{n} f_{j} g_{j}=1 \tag{6}
\end{equation*}
$$

2. Demonstration of Theorem 1.1

For $\alpha \in(0, \infty)$, let

$$
\mathbb{C} \ni z \mapsto\left\{\begin{array}{l}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \\
g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
\end{array} \text { be two entire functions with their derivatives }\left\{f^{\prime}(z), g^{\prime}(z)\right\} .\right.
$$

Then some elementary calculations derive the following four formulae:

$$
\left\{\begin{array}{l}
\int_{\mathbb{C}} f(z) \overline{g(z)} \mathrm{d} \lambda_{\alpha}(z)=\sum_{n=0}^{\infty} \alpha^{-n} a_{n} \overline{b_{n}} n!; \\
\int_{\mathbb{C}} z f(z) \overline{z g(z)} \mathrm{d} \lambda_{\alpha}(z)=\sum_{n=0}^{\infty} \alpha^{-n-1} a_{n} \overline{b_{n}}(n+1)!; \\
\int_{\mathbb{C}} f^{\prime}(z) \overline{g^{\prime}(z)} \mathrm{d} \lambda_{\alpha}(z)=\sum_{n=1}^{\infty} \alpha^{1-n} a_{n} \overline{b_{n}} n^{2}(n-1)!=\alpha \int_{\mathbb{C}} f(z) \overline{g(z)}\left(\alpha|z|^{2}-1\right) \mathrm{d} \lambda_{\alpha}(z) \\
\int_{\mathbb{C}} z f(z) \overline{z g(z)} \mathrm{d} \lambda_{\alpha}(z)=\alpha^{-2} \int_{\mathbb{C}} f^{\prime}(z) \overline{g^{\prime}(z)} \mathrm{d} \lambda_{\alpha}(z)+\alpha^{-1} \int_{\mathbb{C}} f(z) \overline{g(z)} \mathrm{d} \lambda_{\alpha}(z) .
\end{array}\right.
$$

Consequently,

$$
\mathcal{F}_{\alpha, 1}^{2} \subseteq \mathcal{F}_{\alpha}^{2} \text { with }\|f\|_{\alpha, 1}^{2}=\int_{\mathbb{C}}\left|f^{\prime}(z)\right|^{2} \mathrm{~d} \lambda_{\alpha}(z) \Longrightarrow\|f\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2}=\alpha^{-2}\|f\|_{\alpha, 1}^{2}+\alpha^{-1}\|f\|_{\mathcal{F}_{\alpha}^{2}}^{2} .
$$

Moreover, a modification of Cho-Zhu's statement on [8, p. 2496] gives the following pointwise estimation

$$
\begin{equation*}
f \in \mathcal{F}_{\alpha, 1}^{2} \Longrightarrow|f(z)| \lesssim\|f\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2}(1+|z|)^{-1} e^{2^{-1} \alpha|z|^{2}} \forall z \in \mathbb{C} . \tag{1}
\end{equation*}
$$

Lemma 2.1. For

$$
\left\{\begin{array}{l}
z=x+i y \in \mathbb{C} \\
1<p<\infty ; \\
p^{\prime}=p(p-1)^{-1} ; \\
C_{c}^{2}=\left\{\text { all compactly-supported } C^{2} \text {-functions: } \mathbb{C} \rightarrow \mathbb{C}\right\} \\
A^{p}\left(e^{-2 \phi}\right)=\left\{\text { all analytic functions in } L^{p}\left(e^{-2 \phi}\right)\right\},
\end{array}\right.
$$

let $\phi: \mathbb{C} \rightarrow \mathbb{R} \& g: \mathbb{C} \rightarrow \mathbb{C}$ be C^{2}-smooth with

$$
\left\{\begin{array}{l}
0 \leq \Delta \phi(z)=4^{-1}\left(\partial_{x}^{2}+\partial_{y}^{2}\right) \phi(z)=\partial_{z} \bar{\partial}_{z} \phi(z)=\partial \bar{\partial} \phi(z) \tag{2}\\
\partial=\partial_{z}=2^{-1}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) ; \\
\bar{\partial}=\partial_{\bar{z}}=2^{-1}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \\
\bar{\partial}_{2 \phi}^{*} g(z)=-e^{2 \phi(z)} \partial\left(g(z) e^{-2 \phi(z)}\right)
\end{array}\right.
$$

(i) Weighted ($\left.L^{p}, \bar{\partial}\right)$-estimation - not only for a given function f on \mathbb{C} there exists a weak solution $u \in L^{p}\left(e^{-2 \phi}\right)$ to $\bar{\partial} u=f$ in the sense of

$$
\begin{equation*}
\int_{\mathbb{C}} u \overline{\bar{\partial}_{2 \phi}^{*} g} e^{-2 \phi} \mathrm{dA}=\int_{\mathbb{C}} f \bar{g} e^{-2 \phi} \mathrm{dA} \forall g \in C_{c}^{2} \tag{3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sup _{g \in C_{c}^{2}} \frac{\left|\int_{\mathbb{C}} f \bar{g} e^{-2 \phi} \mathrm{dA}\right|}{\left(\left.\int_{\mathbb{C}} \bar{\partial}_{2 \phi}^{*} g\right|^{p^{\prime}} e^{-2 \phi} \mathrm{dA}\right)^{\frac{1}{p^{\prime}}}}<\infty \tag{4}
\end{equation*}
$$

but also $E q$ (4) holds for all $f \in L^{p}\left(\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1}\right)$ if and only if

$$
\begin{equation*}
\int_{\mathbb{C}}|g|^{p^{\prime}}(\Delta(2 \phi))^{\frac{p^{\prime}}{p}} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}\left|\bar{\partial}_{2 \phi}^{*} g\right|^{p^{\prime}} e^{-2 \phi} \mathrm{dA} \forall g \in C_{c}^{2} \tag{5}
\end{equation*}
$$

(ii) Uniqueness up to entire $L^{p}\left(e^{-2 \phi}\right)$-functions - arbitrary two solutions in (i) differ by a function $h \in A^{p}\left(e^{-2 \phi}\right)$ with

$$
\int_{\mathbb{C}}|h|^{p} e^{-2 \phi} \mathrm{dA} \leq 2^{p+1} \int_{\mathbb{C}}|f|^{p}\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1} \mathrm{dA}
$$

(iii) Weighted ($\left.L^{p}, \bar{\partial}\right)$-Poincaré inequality - if $u \in C^{1}$ satisfies (i) above and the $L^{p}\left(e^{-2 \phi}\right)$-minimality below

$$
\begin{equation*}
\int_{\mathbb{C}}|u|^{p} e^{-2 \phi} \mathrm{dA}=\inf _{h \in A^{p}\left(e^{-2 \phi}\right)} \int_{\mathbb{C}}|u+h|^{p} e^{-2 \phi} \mathrm{dA} \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{\mathbb{C}}|u|^{p} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|\bar{\partial} u|^{p}\left(e^{2 \phi} \Delta(2 \phi)\right)^{-1} \mathrm{dA} \tag{7}
\end{equation*}
$$

and consequently, if $u \in C^{1}$ enjoys the case $p=2$ of (i) and the $L^{2}\left(e^{-2 \phi}\right)$-orthogonality

$$
\begin{equation*}
\int_{\mathbb{C}} u \bar{h} e^{-2 \phi} \mathrm{dA}=0 \forall h \in A^{2}\left(e^{-2 \phi}\right), \tag{8}
\end{equation*}
$$

then $E q$ (7) holds for $p=2$.
(iv) Weighted $\left(L^{2}, \bar{\partial}\right)$-estimation is always available.
(v) Uniqueness - if

$$
\begin{equation*}
\exists \epsilon \in(0,2) \text { such that } \int_{\mathbb{C}}\left((1+|z|)^{\epsilon-2} e^{2 \phi(z)}\right)^{2} \mathrm{dA}(z)<\infty \text {, } \tag{9}
\end{equation*}
$$

then the solution in (iv) is unique.
Proof. (i) This part is motivated by Berndtsson's [9, Theorems 2-3]. But, the argument comes from an adjustment of the case $p=2$ presented in Berndtsson's [10, Proposition 1.1].

Suppose that for a given function f on \mathbb{C} there exists a weak solution $u \in L^{p}\left(e^{-2 \phi}\right)$ to $\bar{\partial} u=f$ in the sense of Eq (3). Then the Hölder inequality derives

$$
\left|\int_{\mathbb{C}} f \bar{g} e^{-2 \phi} \mathrm{dA}\right|=\left|\int_{\mathbb{C}} u \overline{\bar{\partial}_{2 \phi}^{*} g} e^{-2 \phi} \mathrm{AA}\right| \leq\left(\int_{\mathbb{C}}|u|^{p} e^{-2 \phi} \mathrm{dA}\right)^{\frac{1}{p}}\left(\int_{\mathbb{C}}\left|\bar{\partial}_{2 \phi}^{*} g\right|^{p^{\prime}} e^{-2 \phi} \mathrm{dA}\right)^{\frac{1}{p^{\prime}}} \quad \forall g \in C_{c}^{2}
$$

Hence Eq (4) holds for the previous function f. Conversely, if $\mathrm{Eq}(4)$ is valid for a given function f on \mathbb{C}, then

$$
S_{\phi}=\left\{\bar{\partial}_{2 \phi}^{*} g: g \in C_{c}^{2}\right\}
$$

is a subspace of $L^{p^{\prime}}\left(e^{-2 \phi}\right)$, and hence the given function f induces the following bounded antilinear functional on S_{ϕ} :

$$
\mathrm{L}_{f}\left(\bar{\partial}_{2 \phi}^{*} g\right)=\int_{\mathbb{C}} f \bar{g} e^{-2 \phi} \mathrm{dA}
$$

This, along with the Hahn-Banach extension theorem, ensures an extension of L_{f} from S_{ϕ} to $L^{p^{\prime}}\left(e^{-2 \phi}\right)$. Consequently, the Riesz-type representation theorem for the dual of $L^{p^{\prime}}\left(e^{-2 \phi}\right)$ produces a function

$$
u \in\left[L^{p^{\prime}}\left(e^{-2 \phi}\right)\right]^{*}=L^{p}\left(e^{-2 \phi}\right)
$$

such that

$$
\mathrm{L}_{f}(G)=\int_{\mathbb{C}} u \bar{G} e^{-2 \phi} \mathrm{dA} \forall G \in L^{p^{\prime}}\left(e^{-2 \phi}\right)
$$

Upon taking $G=\bar{\partial}_{2 \phi}^{*} g$, we find that the last function $u \in L^{p}\left(e^{-2 \phi}\right)$ is a weak solution to $\bar{\partial} u=f$ in the sense of Eq (3).

Moreover, if $\mathrm{Eq}(4)$ holds for all $f \in L^{p}\left(\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1}\right)$, then an application of the duality

$$
\left[L^{p}\left(e^{-2 \phi}\right)\right]^{*}=L^{p^{\prime}}\left(e^{-2 \phi}\right)
$$

under the pairing

$$
\langle f, g\rangle_{2 \phi}=\int_{\mathbb{C}} f \bar{g} e^{-2 \phi} \mathrm{dA}=\int_{\mathbb{C}}\left((\Delta(2 \phi))^{-\frac{1}{p}} f\right)\left((\Delta(2 \phi))^{\frac{1}{p}} \bar{g}\right) e^{-2 \phi} \mathrm{dA}
$$

derives Eq (5). Evidently, if Eq (5) holds, then $\langle f, g\rangle_{2 \phi}$ deduces that Eq (4) is valid for all $f \in$ $L^{p}\left(\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1}\right)$.

As an aside of the preceding demonstration, we achieve that for any $f \in L^{p}\left(\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1}\right)$ there exists a weak solution $u \in L^{p}\left(e^{-2 \phi}\right)$ of $\bar{\partial} u=f$ with

$$
\int_{\mathbb{C}}|u|^{p} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|f|^{p}(\Delta(2 \phi))^{-1} e^{-2 \phi} \mathrm{dA}
$$

if and only if Eq (5) holds.
(ii) This follows from the fact that $\bar{\partial} u=0$ if and only if u is analytic.
(iii) This comes from a modification of the argument for Berndtsson's [10, Corollary 1.4]. Indeed, without loss of generality, we may assume

$$
\int_{\mathbb{C}}|\bar{\partial} u|^{p}\left(e^{2 \phi} \Delta(2 \phi)\right)^{-1} \mathrm{dA}<\infty .
$$

Now, the verification of (i) ensures that

$$
\bar{\partial} v=\bar{\partial} u \in L^{p}\left(\left(\Delta(2 \phi) e^{2 \phi}\right)^{-1}\right)
$$

has a weak solution v enjoying the inequality

$$
\begin{equation*}
\int_{\mathbb{C}}|\nu|^{p} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|\bar{\partial} u|^{p}(\Delta(2 \phi))^{-1} e^{-2 \phi} \mathrm{dA} . \tag{10}
\end{equation*}
$$

Note that (ii) produces a function $h_{\dagger} \in A^{p}\left(e^{-2 \phi}\right)$ such that $v=u+h_{\dagger}$. So Eqs (6) \& (10) imply

$$
\int_{\mathbb{C}}|u|^{p} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}\left|u+h_{\dagger}\right|^{p} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|\bar{\partial} u|^{p}(\Delta(2 \phi))^{-1} e^{-2 \phi} \mathrm{dA},
$$

as desired in Eq (7).
Especially, if $\mathrm{Eq}(8)$ is valid, then a combination of

$$
\bar{\partial}(v+h)=\bar{\partial} u \forall h \in A_{\phi}^{2}
$$

and the closedness of $A^{2}\left(e^{-2 \phi}\right)$ in $L^{2}\left(e^{-2 \phi}\right)$ yields a function $h_{\ddagger} \in A^{2}\left(e^{-2 \phi}\right)$ such that

$$
\left\{\begin{array}{l}
\int_{\mathbb{C}}\left|v+h_{\ddagger}\right|^{2} e^{-2 \phi} \mathrm{dA}=\inf _{h \in A_{\phi}^{2}} \int_{\mathbb{C}}|v+h|^{2} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|v|^{2} e^{-2 \phi} \mathrm{dA} ; \tag{11}\\
\int_{\mathbb{C}}\left(v+h_{\ddagger}-u\right) \bar{h} e^{-2 \phi} \mathrm{dA}=0 \forall h \in A^{2}\left(e^{-2 \phi}\right) .
\end{array}\right.
$$

Upon noticing $\bar{\partial}\left(v+h_{\ddagger}-u\right)=0$, we obtain

$$
v+h_{\ddagger}-u \in\left(A^{2}\left(e^{-2 \phi}\right)\right) \cap\left(A^{2}\left(e^{-2 \phi}\right)\right)^{\perp}=\{0\} \& v+h_{\ddagger}=u .
$$

As a consequence, u is the $L^{2}\left(e^{-2 \phi}\right)$-minimal solution to $\bar{\partial} v=\bar{\partial} u$. Thus, the weighted $\left(L^{2}, \bar{\partial}\right)$-Poincaré inequality follows from the first inequality of Eq (11) and the case $p=2$ of Eq (10).

Here it is appropriate to mention that as shown in [10, Theorem 3.3] the case $p=2$ of Eq (10) can be used to establish the following Brunn-Minkowski-type concavity: if \mathbb{D} is a convex open subset of the $(n+1)$-dimesnional Euclidean space $\mathbb{R}^{n} \times(-\infty, \infty)$ and $\mathbb{D}_{t}=\{x:(x, t) \in \mathbb{D}\}$ then the Lebesgue measure $\mathrm{M}_{n}\left(\mathbb{D}_{t}\right)$ satisfies $\partial_{t}^{2} \log \mathrm{M}_{n}\left(\mathbb{D}_{t}\right) \leq 0$ - i.e.,- the function $t \mapsto \log \mathrm{M}_{n}\left(\mathbb{D}_{t}\right)$ is concave - in particular - so is $t \mapsto \log \mathrm{~A}\left(\mathbb{D}_{t}\right)=\log \mathrm{M}_{2}\left(\mathbb{D}_{t}\right)$.
(iv) This is a minor variant of [11, Theorem 1.1] - the well-known Hörmander L^{2}-estimate for the $\bar{\partial}$-equation presented in [12]. In fact, given $f \in L^{2}\left(\left(e^{2 \phi} \Delta(2 \phi)\right)^{-1}\right)$ the basic identity (cf. [10, Proposition 1.2])

$$
\int_{\mathbb{C}}|g|^{2}(\Delta(2 \phi)) e^{-2 \phi} \mathrm{dA}+\int_{\mathbb{C}}|\bar{\partial} g|^{2} e^{-2 \phi} \mathrm{dA}=\int_{\mathbb{C}}\left|\bar{\partial}_{2 \phi}^{*} g\right|^{2} e^{-2 \phi} \mathrm{dA} \forall g \in C_{c}^{2},
$$

ensures the second iff-condition of (i) with $p=2$

$$
\int_{\mathbb{C}}|g|^{2}(\Delta(2 \phi)) e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}\left|\bar{\partial}_{2 \phi}^{*} g\right|^{2} e^{-2 \phi} \mathrm{dA} \forall g \in C_{c}^{2}
$$

thereby reaching the existence of a weak solution u to $\bar{\partial} u=f$ with

$$
\int_{\mathbb{C}}|u|^{2} e^{-2 \phi} \mathrm{dA} \leq \int_{\mathbb{C}}|f|^{2}(\Delta(2 \phi))^{-1} e^{-2 \phi} \mathrm{dA} .
$$

(v) Such a uniqueness is newly induced by Eq (1). Yet, its proof is similar to the argument for Hedenmalm's curvature-orientated uniqueness of the $\bar{\partial}$-equation in [11, Theorem 1.4]. As a matter of fact, if $u_{1} \& u_{2}$ are two solutions in (iv), then $u_{1}-u_{2}$ is an entire function on \mathbb{C} due to (ii), and hence $\log \left|u_{1}-u_{2}\right|$ is subharmonic on \mathbb{C}. This, plus Eq (2), deduces

$$
\Delta \log \left(\left|u_{1}-u_{2}\right| e^{\phi}\right)=\Delta \log \left|u_{1}-u_{2}\right|+\Delta \phi>0
$$

and so that

$$
\left|u_{1}-u_{2}\right| e^{\phi}=\exp \left(\log \left(\left|u_{1}-u_{2}\right| e^{\phi}\right)\right)
$$

is subharmonic on \mathbb{C}. Now, for any

$$
\left(z_{0}, r\right) \in \mathbb{C} \times\left(1+\left|z_{0}\right|, \infty\right)
$$

a combination of Eq (9), the mean-value-inequality for the subharmonic function $\left|u_{1}-u_{2}\right| e^{\phi}$ and the Cauchy-Schwarz inequality derives

$$
\begin{aligned}
\left|u_{1}\left(z_{0}\right)-u_{2}\left(z_{0}\right)\right| e^{\phi\left(z_{0}\right)} & \leq\left(\pi r^{2}\right)^{-1} \int_{\left|z-z_{0}\right|<r}\left|u_{1}-u_{2}\right| e^{\phi} \mathrm{dA} \\
& \leq\left(\pi r^{2}\right)^{-1} \int_{|z|<2 r-1}\left|u_{1}-u_{2}\right| e^{\phi} \mathrm{dA}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \pi^{-1}(2 r)^{-\epsilon} \int_{|z|<2 r-1}\left|u_{1}(z)-u_{2}(z)\right| e^{\phi(z)}(1+|z|)^{\epsilon-2} \mathrm{dA}(z) \\
& \leq \pi^{-1}(2 r)^{-\epsilon} \int_{\mathbb{C}}\left|u_{1}(z)-u_{2}(z)\right| e^{\phi(z)}(1+|z|)^{\epsilon-2} \mathrm{dA}(z) \\
& \leq \pi^{-1}(2 r)^{-\epsilon}\left(\int_{\mathbb{C}}\left|u_{1}-u_{2}\right|^{\frac{d}{2} A} \frac{e^{2 \phi}}{e^{\frac{1}{2}}}\left(\int_{\mathbb{C}}\left((1+|z|)^{\epsilon-2} e^{2 \phi(z)}\right)^{2} \mathrm{dA}(z)\right)^{\frac{1}{2}}\right. \\
& \leq 2^{2} \pi^{-1}(2 r)^{-\epsilon}\left(\int_{\mathbb{C}}|f|^{2} \frac{\mathrm{dA}}{(\Delta \phi) e^{2 \phi}}\right)^{\frac{1}{2}}\left(\int_{\mathbb{C}}\left((1+|z|)^{\epsilon-2} e^{2 \phi(z)}\right)^{2} \mathrm{dA}(z)\right)^{\frac{1}{2}}
\end{aligned}
$$

Letting $r \rightarrow \infty$ in the last estimation gives

$$
\left\{\begin{array}{l}
\left|u_{1}\left(z_{0}\right)-u_{2}\left(z_{0}\right)\right| e^{\phi\left(z_{0}\right)}=0 \\
u_{1}\left(z_{0}\right)=u_{2}\left(z_{0}\right)
\end{array}\right.
$$

Since z_{0} is arbitrary, the last equality ensures $u_{1}=u_{2}$ on \mathbb{C}.
Argument for Theorem 1.1. Clearly, if $g \equiv 1$ in (3)-(4), then (5) \Longrightarrow (6) follows from $\mathrm{Eq}(3) \Longrightarrow(4)$ which is verified as below.

Suppose that (3) is valid. Let

$$
\begin{cases}\varphi_{j}=\frac{g^{m} \overline{I_{j}}}{\sum_{l=1}^{n}|\dot{f j}|^{2}} & \forall j \in\{1, \ldots, n\} ; \\ H_{j, k}=g^{m} \varphi_{j} \bar{\partial} \varphi_{k} & \forall j, k \in\{1, \ldots, n\}\end{cases}
$$

If $b_{j, k}$ is a function solving pointwisely the $\bar{\partial}$-equation

$$
\begin{equation*}
\bar{\partial} b_{j, k}=H_{j, k} \tag{12}
\end{equation*}
$$

then each

$$
\begin{equation*}
g_{j}=g^{2 m} \varphi_{j}+\sum_{k=1}^{n}\left(b_{j, k}-b_{k, j}\right) f_{k} \tag{13}
\end{equation*}
$$

is an entire function enjoying

$$
\sum_{j=1}^{n} g_{j} f_{j}=g^{2 m} \sum_{j=1}^{n} f_{j} \varphi_{j}+\sum_{k, j=1}^{n}\left(b_{j k}-b_{k j}\right) f_{k} f_{j}=g^{3 m}
$$

and hence the equation in (4) is met.
Thanks to the smoothness of f_{1}, \ldots, f_{n}, g, Lemma 2.1(iv) with

$$
\phi(z)=2^{-1}(2 m-1) \alpha|z|^{2}
$$

produces a function $b_{j, k}$ such that (12) holds pointwisely with

$$
\begin{align*}
\int_{\mathbb{C}}\left|b_{j, k}(z)\right|^{2} e^{-(2 m-1) \alpha|z|^{2}} \mathrm{~d} A(z) & \leq 2^{-1} \int_{\mathbb{C}}\left|H_{j, k}(z)\right|^{2}\left(\frac{\left.e^{-(2 m-1) \alpha|z|}\right|^{2}}{\Delta \phi(z)}\right) \mathrm{dA}(z) \\
& =((2 m-1) \alpha)^{-1} \int_{\mathbb{C}}\left|H_{j, k}(z)\right|^{2} e^{-\left.(2 m-1) \alpha| |\right|^{2}} \mathrm{dA}(z) \tag{14}
\end{align*}
$$

In order to achieve $g_{j} \in \mathcal{F}_{2 m \alpha, 1}^{2}$ in (4), in the sequel we employ (12)-(13) to prove

$$
\left\{\begin{array}{l}
\int_{\mathbb{C}}\left|H_{j, k}(z)\right|^{2} e^{-\left.(2 m-1) a|z|\right|^{2}} \mathrm{dA}(z)<\infty \tag{15}\\
\int_{\mathbb{C}}\left|z g_{j}(z)\right|^{2} e^{-2 m a|z|^{2}} \mathrm{dA}(z)<\infty
\end{array}\right.
$$

\triangleright It is easy to get

$$
\sup _{z \in \mathbb{C}}\left|\varphi_{j}(z)\right|=\sup _{z \in \mathbb{C}}\left|\frac{g^{m}(z) \overline{f_{j}(z)}}{\sum_{l=1}^{n}\left|f_{l}(z)\right|^{2}}\right|=\sup _{z \in \mathbb{C}}\left(\frac{|g(z)|^{m}}{\left(\sum_{l=1}^{n}\left|f_{l}(z)\right|^{2}\right)^{\frac{1}{2}}}\right)\left(\frac{\left|f_{j}(z)\right|}{\left(\sum_{l=1}^{n}\left|f_{l}(z)\right|^{2}\right)^{\frac{1}{2}}}\right) \lesssim 1 .
$$

In the above and below, $X \lesssim Y$ stands for $X \leq c Y$ for a positive constant c.

- For the case $m=1$, we utilize Eqs (1) \& (3) to derive

$$
\begin{aligned}
\int_{\mathbb{C}}\left|z g^{2 m}(z) \varphi_{j}(z)\right|^{2} e^{-2 m \alpha|z|^{2}} \mathrm{dA}(z) & \lesssim \int_{\mathbb{C}}\left|z g^{2}(z)\right|^{2} e^{-\left.2 \alpha| |\right|^{2}} \mathrm{dA}(z) \\
& \lesssim\|g\|_{\mathscr{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}|z|^{2}|g(z)|^{2}\left(\frac{e^{2^{-1} \alpha|z|^{2}}}{1+|z|}\right)^{2} e^{-2 \alpha|z|^{2}} \mathrm{dA}(z) \\
& \lesssim\|g\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}|z|^{2}|g(z)|^{2}(1+|z|)^{-2} e^{-\left.\alpha|z|\right|^{2}} \mathrm{dA}(z) \\
& \lesssim\|g\|_{\mathscr{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}|z|^{2}|g(z)|^{2} e^{-\alpha|z|^{2}} \mathrm{dA}(z) \\
& \lesssim\|g\|_{\mathscr{F}_{\alpha, 1}^{2}}^{4} \\
& \lesssim \sum_{j=1}^{n}\left\|f_{j}\right\|_{\mathscr{F}_{\alpha, 1}^{2}}^{4}<\infty .
\end{aligned}
$$

- For the case $m>1$, we utilize Eq (1) - the Hölder inequality - Eq (3) to derive

$$
\begin{aligned}
\int_{\mathbb{C}}\left|z g^{2 m}(z) \varphi_{j}(z)\right|^{2} e^{-2 m \alpha|z|^{2}} \mathrm{dA}(z) & \lesssim\|g\|_{\mathcal{F}_{\alpha, 1}^{2}}^{4 m} \int_{\mathbb{C}}(1+|z|)^{-4 m}|z|^{2} \mathrm{dA}(z) \\
& \lesssim\left\|g^{m}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{4} \int_{\mathbb{C}}(1+|z|)^{-2(2 m-1)} \mathrm{dA}(z) \\
& \lesssim \sum_{j=1}^{n}\left\|f_{j}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{4}<\infty .
\end{aligned}
$$

In summary, we always have

$$
\begin{equation*}
\int_{\mathbb{C}}\left|z g^{2 m}(z) \varphi_{j}(z)\right|^{2} e^{-2 m a|z|^{2}} \mathrm{dA}(z) \lesssim \sum_{j=1}^{n}\left\|f_{j}\right\|_{\mathcal{F}_{\alpha, 1}}^{4}<\infty . \tag{16}
\end{equation*}
$$

Now, a straightforward computation gives

$$
\bar{\partial} \varphi_{j}=\frac{g^{m} \sum_{l=1}^{n} f_{l}\left(\overline{f_{l}} \overline{\partial f_{j}}-\overline{f_{j}} \overline{\partial f_{l}}\right)}{\left(\sum_{l=1}^{n}\left|f_{l}\right|^{2}\right)^{2}} .
$$

As evaluated in [13, 14], we have

$$
\left|\bar{\partial} \varphi_{j}\right|^{2} \lesssim \frac{|g|^{2 m}\left(\sum_{l=1}^{n}\left|f_{i}\right|^{2}\right)^{2} \sum_{l=1}^{n}\left|\partial f_{l}\right|^{2}}{\left(\sum_{l=1}^{n}\left|f_{l}\right|^{2}\right)^{4}} \lesssim \frac{\sum_{l=1}^{n}\left|\partial f_{l}\right|^{2}}{\sum_{l=1}^{n}\left|f_{l}\right|^{2}},
$$

thereby producing

$$
\left|H_{j, k}\right|^{2}=\left|g^{m} \varphi_{j} \bar{\partial} \varphi_{k}\right|^{2} \lesssim \sum_{l=1}^{n}\left|\partial f_{l}\right|^{2}
$$

Clearly, we get

$$
\begin{align*}
\int_{\mathbb{C}}\left|H_{j, k}(z)\right|^{2} e^{-(2 m-1) \alpha|z|^{2}} \mathrm{dA}(z) & \lesssim \int_{\mathbb{C}} \sum_{l=1}^{n}\left|\partial f_{l}(z)\right|^{2} e^{-(2 m-1) \alpha|z|^{2}} \mathrm{dA}(z) \\
& \lesssim \sum_{l=1}^{n}\left\|f_{l}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2}<\infty, \tag{17}
\end{align*}
$$

whence verifying the first inequality of (15).
\triangleright According to Lemma 2.1(i), there exists $b_{j, k}$ classically resolving (12) with (14), and consequently, a combination of Eqs (1) \& (17) yields

$$
\begin{align*}
\int_{\mathbb{C}}\left|z b_{j, k}(z)\right|^{2}\left|f_{k}(z)\right|^{2} e^{-2 m \alpha|z|^{2}} \mathrm{dA}(z) & \lesssim\left\|f_{k}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}\left|b_{j, k}(z)\right|^{2}|z|^{2}(1+|z|)^{-2} e^{-(2 m-1) \alpha|z|^{2}} \mathrm{dA}(z) \\
& \lesssim\left\|f_{k}\right\|_{\mathscr{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}\left|b_{j, k}(z)\right|^{2} e^{-\left.(2 m-1)|k| z\right|^{2}} \mathrm{dA}(z) \\
& \lesssim\left\|f_{k}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2} \int_{\mathbb{C}}\left|H_{j, k}(z)\right|^{2} e^{-(2 m-1) \alpha|z|^{2}} \mathrm{dA}(z) \\
& \lesssim\left\|f_{k}\right\|_{\mathcal{F}_{\alpha, 1}^{2}}^{2} \sum_{l=1}^{n}\left\|f_{l}\right\|_{\mathscr{F}_{\alpha, 1}^{2}}^{2}<\infty . \tag{18}
\end{align*}
$$

Since the comparable constants in (18) are independent of $\{j, k\}$, the formula (13), along with (16) \& (18), validates the second inequality of (15).

Acknowledgements

XL was supported by NNSF of China (\#12171150; \#11771139) \& NSF of Zhejiang Province (LY20A010008); JX was supported by NSERC of Canada (\#202979) \& MUN's SBM-Fund (\#214311); CY was supported by NNSF of China (\#11501415).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. D. Hilbert, Über die vollen Invariantesysteme, Math. Ann., 42 (1893), 313-373. https://doi.org/10.1007/BF01444162
2. G. Hermann, Die frage der endlich vielen schritte in der theorie der polynomideale, Math. Ann., 95 (1926), 736-788. https://doi.org/10.1007/BF01206635
3. D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math., 72 (1983), 407-464. https://doi.org/10.1007/BF01398396
4. W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. Math., 126 (1987), 577591. https://doi.org/10.2307/1971361
5. J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc., 4 (1988), 963-975. https://doi.org/10.1090/S0894-0347-1988-0944576-7
6. H. Kwon, A. Netyanun, T. Trent, An analytic approach to the degree bound in the Nullstellensatz, Proc. Amer. Math. Soc., 144 (2016), 1145-1152. https://doi.org/10.1090/proc/12781
7. K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., Vol. 263, Springer, New York, 2012.
8. H. R. Cho, K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263 (2012), 2483-2506. https://doi.org/10.1016/j.jfa.2012.08.003
9. B. Berndtsson, Weighted estimates for $\bar{\partial}$ in domains in \mathbb{C}, Duke Math. J., 66 (1992), 239-255. https://doi.org/10.1215/S0012-7094-92-06607-5
10. B. Berndtsson, An Introduction to Things $\bar{\partial}$, Analytic and Algebraic Geometry, McNeal, Amer. Math. Soc. Providence RI 2010. 7-76. https://doi.org/10.1090/PCMS/017/02
11. H. Hedenmalm, On Hörmander's solution of the $\bar{\partial}$-equation. I, Math. Z., 281 (2015), 349-355. https://doi.org/10.1007/s00209-015-1487-7
12. L. Hörmander, An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973.
13. D. P. Banjade, Wolff's ideal theorem on Q_{p} spaces, Rocky Mountain J. Math., 49 (2019), 21212133. https://doi.org/10.1216/RMJ-2019-49-7-2121
14. J. Xiao, C. Yuan, Cauchy-Riemann $\bar{\partial}$-equations with some applications, Preprint (submitted), 2021.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
