The Cauchy problem for the compressible Euler system with damping is considered in this paper. Based on previous global existence results, we further study the low Mach number limit of the system. By constructing the uniform estimates of the solutions in the well-prepared initial data case, we are able to prove the global convergence of the solutions in the framework of small solutions.
Citation: Fei Shi. Incompressible limit of Euler equations with damping[J]. Electronic Research Archive, 2022, 30(1): 126-139. doi: 10.3934/era.2022007
The Cauchy problem for the compressible Euler system with damping is considered in this paper. Based on previous global existence results, we further study the low Mach number limit of the system. By constructing the uniform estimates of the solutions in the well-prepared initial data case, we are able to prove the global convergence of the solutions in the framework of small solutions.
[1] | S. Geng, Y. Lin, M. Mei, Asymptotic behavior of solutions to Euler equations with time-dependent damping in critical case, SIAM J. Math. Ana., 52 (2020), 1463–1488. https://doi.org/10.1137/19M1272846 doi: 10.1137/19M1272846 |
[2] | D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Theor. Phys., 238 (2003), 211–223. https://doi.org/10.1007/s0022000308598 doi: 10.1007/s0022000308598 |
[3] | T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475–485. https://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741 |
[4] | X. Ding, G-Q. Chen, P. Z. Luo, Convergence of the fraction step Lax-Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys., 121 (1989) 63–84. https://doi.org/10.1007/BF01218624 doi: 10.1007/BF01218624 |
[5] | F. Huang, R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Equ., 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012 doi: 10.1016/j.jde.2005.03.012 |
[6] | F. Huang, P. Marcati, R. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24. https://doi.org/10.1007/s002050040349y doi: 10.1007/s002050040349y |
[7] | F. Huang, R. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003) 359–376. https://doi.org/10.1007/s0020500202345 doi: 10.1007/s0020500202345 |
[8] | L. Hsiao, T.P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/BF02099268 doi: 10.1007/BF02099268 |
[9] | K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping, J. Differ. Equ., 131 (1996), 171–188. https://doi.org/10.1006/jdeq.1996.0159 doi: 10.1006/jdeq.1996.0159 |
[10] | K. Nishihara, W. Wang, T. Yang, $L^p$-convergence rate to nonlinear diffusion waves for p-system with damping, J. Differ. Equ., 161 (2000), 191–218. https://doi.org/10.1006/jdeq.1999.3703 doi: 10.1006/jdeq.1999.3703 |
[11] | W. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equ., 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937 doi: 10.1006/jdeq.2000.3937 |
[12] | H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping, J. Differ. Equ., 174 (2001), 200–236. https://doi.org/10.1006/jdeq.2000.3936 doi: 10.1006/jdeq.2000.3936 |
[13] | H. Cui, J. Gao, L. Yao, Asymptotic behavior of the one-dimensional compressible micropolar fluid model, Electron. Res. Arch., 29 (2021), 2063. https://doi.org/10.3934/era.2020105 doi: 10.3934/era.2020105 |
[14] | F. Hou, H. Yin, On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases, Discrete Contin. Dyn Syst, 40 (2020), 1435. https://doi.org/10.3934/dcds.2020083 doi: 10.3934/dcds.2020083 |
[15] | Y. Hu, F. Li, On a degenerate hyperbolic problem for the 3-D steady full Euler equations with axial-symmetry, Adv. Nonlinear Ana., 10 (2021), 584–615. https://doi.org/10.1515/anona20200148 doi: 10.1515/anona20200148 |
[16] | J. Li, J. Shen, G. Xu, The global supersonic flow with vacuum state in a 2D convex duct, Electron. Res. Arch., 29 (2021), 2077. https://doi.org/10.3934/era.2020106 doi: 10.3934/era.2020106 |
[17] | M. Li, X. Pu, S. Wang, Quasineutral limit for the compressible two-fluid Euler CMaxwell equations for well-prepared initial data, Electron. Res. Arch., 28 (2020), 879. https://doi.org/10.3934/era.2020046 doi: 10.3934/era.2020046 |
[18] | J. Lian, Global well-posedness of the free-interface incompressible Euler equations with damping, Discrete Contin. Dyn. Syst., 40 (2020), 2061. https://doi.org/10.3934/dcds.2020106 doi: 10.3934/dcds.2020106 |
[19] | S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34 (1981), 481–524. https://doi.org/10.1002/cpa.3160340405 doi: 10.1002/cpa.3160340405 |
[20] | S. Klainerman, A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math., 35 (1982), 629–651. https://doi.org/10.1002/cpa.3160350503 doi: 10.1002/cpa.3160350503 |
[21] | S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26 (1986), 323–331. https://doi.org/10.1215/kjm/1250520925 doi: 10.1215/kjm/1250520925 |
[22] | S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differ. Equ., 114 (1994), 476–512. https://doi.org/10.1006/jdeq.1994.1157 doi: 10.1006/jdeq.1994.1157 |
[23] | T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions, Adv. Differ. Equ., 10 (2005), 19–44. |
[24] | G. Métivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Ration. Mech. Anal., 158 (2001), 61–90. https://doi.org/10.1007/PL00004241 doi: 10.1007/PL00004241 |
[25] | G. Métivier, S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations, J. Differ. Equ., 187 (2003), 106–183. https://doi.org/10.1016/S00220396(02)000372 doi: 10.1016/S00220396(02)000372 |
[26] | P. L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77 (1998), 585–627. https://doi.org/10.1016/S00217824(98)801396 doi: 10.1016/S00217824(98)801396 |
[27] | B. Desjardins, E. Grenier, P. L. Lions, N. Masmoudi, Incompressible limit for solutionsof the isentropic navier Cstokes equationswith dirichlet boundary conditions, J. Math. Anal. Appl., 78 (1999), 461–471. https://doi.org/10.1016/S00217824(99)00032X doi: 10.1016/S00217824(99)00032X |
[28] | H. Bessaih, Limite de modeles de fluides compressibles, Port. Math., 52 (1995), 441–464. |
[29] | Y. Ou, Incompressible limits of the Navier CStokes equations for all time, J. Differ. Equ., 247 (2009), 3295–3314. https://doi.org/10.1016/j.jde.2009.05.009 doi: 10.1016/j.jde.2009.05.009 |
[30] | C. M. Dafermos, R. Pan, Global BV solutions for the p-system with frictional damping, SIAM J. Math. Anal., 41 (2009), 1190–1205. https://doi.org/10.1137/080735126 doi: 10.1137/080735126 |
[31] | T. C. Sideris, B. Thomases, D. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Commun. Partial. Differ. Equ., 28 (2003), 795–816. https://doi.org/10.1081/PDE120020497 doi: 10.1081/PDE120020497 |