A new bifurcation from simple eigenvalue theorem is proved for general nonlinear functional equations. It is shown that in this bifurcation scenario, the bifurcating solutions are on a curve which is tangent to the line of trivial solutions, while in typical bifurcations the curve of bifurcating solutions is transversal to the line of trivial ones. The stability of bifurcating solutions can be determined, and examples from partial differential equations are shown to demonstrate such bifurcations.
Citation: Ping Liu, Junping Shi. A degenerate bifurcation from simple eigenvalue theorem[J]. Electronic Research Archive, 2022, 30(1): 116-125. doi: 10.3934/era.2022006
A new bifurcation from simple eigenvalue theorem is proved for general nonlinear functional equations. It is shown that in this bifurcation scenario, the bifurcating solutions are on a curve which is tangent to the line of trivial solutions, while in typical bifurcations the curve of bifurcating solutions is transversal to the line of trivial ones. The stability of bifurcating solutions can be determined, and examples from partial differential equations are shown to demonstrate such bifurcations.
[1] | K. C. Chang, Methods in nonlinear analysis, Springer Monographs in Mathematics, 2005. |
[2] | M. G. Crandall, P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2 |
[3] | K. Deimling. Nonlinear functional analysis, Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[4] | J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494–531. https://doi.org/10.1006/jfan.1999.3483 doi: 10.1006/jfan.1999.3483 |
[5] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer-Verlag, 1983. |
[6] | P. Liu, J. P. Shi, Y. Wang, Bifurcation from a degenerate simple eigenvalue, J. Funct. Anal., 264 (2013), 2269–2299. https://doi.org/10.1016/j.jfa.2013.02.010 doi: 10.1016/j.jfa.2013.02.010 |
[7] | P. Liu, J. P. Shi, Y. Wang, A double saddle-node bifurcation theorem, Commun. Pure Appl. Anal., 12 (2013), 2923–2933. https://doi.org/10.3934/cpaa.2013.12.2923 doi: 10.3934/cpaa.2013.12.2923 |
[8] | L. Zhao, F. Zhao, J. Shi, Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differ. Equations, 54 (2015), 2657–2691. https://doi.org/10.1007/s00526-015-0879-1 doi: 10.1007/s00526-015-0879-1 |
[9] | P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9 |
[10] | E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J., 23 (1974), 1069–1076. https://doi.org/10.1512/iumj.1974.23.23087 doi: 10.1512/iumj.1974.23.23087 |
[11] | E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one, Bull. London Math. Soc., 34 (2002), 533–538. https://doi.org/10.1112/S002460930200108X doi: 10.1112/S002460930200108X |
[12] | P. Liu, J. Shi, Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573–600. https://doi.org/10.1016/j.jfa.2007.06.015 doi: 10.1016/j.jfa.2007.06.015 |
[13] | L.Nirenberg, Topics in nonlinear functional analysis, American Mathematical Society, 2001. |
[14] | M. G. Crandall, P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161–180. https://doi.org/10.1007/BF00282325 doi: 10.1007/BF00282325 |