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Abstract: The Cauchy problem for the compressible Euler system with damping is considered in this
paper. Based on previous global existence results, we further study the low Mach number limit of the
system. By constructing the uniform estimates of the solutions in the well-prepared initial data case,
we are able to prove the global convergence of the solutions in the framework of small solutions.
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1. Introduction

We are concerned with the 3D compressible Euler equations with frictional damping ∂tρ + ∇ · (ρu) = 0,

ρ
(
∂tu + (u · ∇)u

)
+ 1
ε2
∇p(ρ) = −Aρu.

(1.1)

Here, x ∈ T3, t > 0, the unknown functions ρ and u denote the density and velocity of the fluid
respectively; the pressure-density function p is given by

p(ρ) = aργ, a > 0, γ > 1;

the constant A > 0 is the friction coefficient and ε is the Mach number. The system can be used to
model the compressible fluid flow through a porous media.

The compressible Euler equations with damping can be used to simulate the motion for the com-
pressible gas flow through a porous medium. The medium induces a friction force, proportional to the
linear momentum in the opposite direction. Usually, this model has many variations. For example,
the friction coefficient A may depend on time [1] and, more generally, one can consider the nonlinear
damping [2]. Here, we only study the constant-coefficient linear damping case.

It is well-known that the compressible Euler equations will develop singularity in finite time for
general initial data [3]. However, the damping effect will prevent the formation of singularities in small
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amplitude flows, but large solutions may still break down [31]. Due to strong physical background and
significant mathematical challenge, system (1.1) with fixed Mach number has been studied by many
researchers. The readers are referred to [30] for BV solutions and [4, 5] for L∞ solution. For the
existence of weak solutions, we refer to [6,7]. While for global classical solution, see [8–12]. We also
refer to [13–18] and references therein for further studies in this direction and related problems.

In particular, the global-in-time existence and asymptotic behavior of the classical solution were
obtained by Wang and Yang [11]. By employing the Green’s function method and energy estimate,
they proved that if the suitable Sobolev norm of the initial data is small, then the global existence of
classical solution can be obtained, and the L2 norm of the solution decays at the rate of t−3/4 in the
whole space.

Physically, the Mach number represents the ratio of the typical speed of the flow to the speed of
sound. In practical applications, the incompressible equations are often used when the Mach number
is sufficiently small. So it is natural to think, under appropriate conditions on the initial data, that
solutions of the compressible system converge to the solution of the incompressible system when the
Mach number goes to zero. This is the low Mach number limit problem in fluid mechanics.

Over the past four decades, many results have been obtained about the incompressible limit of
fluid dynamic equations, which is a special case of the low Mach number limit. In their ground-
breaking works [19, 20], Klainerman and Majda setup a general framework for the study of singular
limit of hyperbolic PDEs. With the general theory, they proved the incompressible limit of isentropic
Euler equations in the well-prepared initial data case. For general initial data, Ukai [21] obtained the
convergence of the solutions in the whole space. Finally by using the filtering method, Schochet [22]
solved the incompressible limit problem for Euler equations in the torus case. Concerning the low
Mach number limit of the non-isentropic Euler equations, we refer to [23–25].

Since these pioneering works, the mathematical analysis of the low Mach number limit to the isen-
tropic Navier-Stokes equations also attracted a lot of attention. In the framework of weak solutions, the
incompressible limit of Navier-Stokes equations in the periodic case and bounded domain was studied
in [26] and [27] respectively. For global-in-time regular solutions, Bessaih [28] established the uni-
form estimates of the solutions with almost incompressible initial data and proved the convergence to
the solution of incompressible system with no-slip boundary conditions. Ou [29] further extended this
result to the slip-type boundary conditions.

For the local classical solutions, the incompressible limit of the system (1.1) can be established in a
similar fashion as the compressible Euler equations. If the damping effect is considered, it is possible
to study the incompressible limit of the system (1.1) for all time since we have global small solutions.
To the best of our knowledge, there are no results studying the global incompressible limit of Euler
equations with damping. Incompressible fluid flow differs from compressible fluid flow in that the
continuity equation is replaced by the divergence-free condition on the velocity field. Mathematically,
the low Mach number limit attempts to bridge the gap between those two different descriptions and,
in some sense, it is relatively easy to study the incompressible system instead of the compressible
equations.

In this paper, based on the previous global existence results of the Euler system with damping, we
are going to study the global incompressible limit to system (1.1) in the framework of small amplitude
solutions. Namely, we will show that as the Mach number goes to zero, the solutions to Eqs (1.1) will
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converge to the solution of the following system ρ̄
(
∂tv + (v · ∇)v

)
+ ∇π = −Aρ̄v,

∇ · v = 0,
(1.2)

where ρ̄ is some constant and π can be formally obtained by applying ∇· to the first equation.
The rest of the paper is arranged as follows. In Section 2, we reformulate the Cauchy problem for

Eq (1.1) into a symmetric hyperbolic system and state the global existence of classical solutions to
the system with fixed Mach number. In Section 3, the global uniform estimates of the solution are
obtained. Finally with the uniform estimates, we will prove the convergence of the solutions of the
original equations (1.1) to the solution of the limit system in Section 4.

Notation. Throughout the paper C will denote a positive constant whose value may be different in
each occurrence, that may depend PDEs, domain, and Sobolev index, but are independent of the small
parameter ε. The small letter c and its variants denote similar constants whose value is fixed. ∂αx or
simply ∂α with multi-index α stands for the usual spatial derivatives. For any integer s ≥ 0, H s denote
the inhomogeneous Sobolev space H s(T3) with the norm ∥ · ∥Hs . We denote ∥ · ∥ = ∥ · ∥L2 for simplicity.
Generally, the solution is dependent on the small parameter ε in this paper, so it is better to write the
solution uε(t, x) rather than u(t, x) for example. But for simplicity, we always omit the superscript ε
and use u(t, x) instead when there is no confusion.

2. Reformulation of the problem

In this short section, we will give a reformulation of the problem. To simplify the presentation, we
introduce

h(ρ) =
aγ
γ − 1

ργ−1. (2.1)

Using h and u as the new unknown functions, we get from the original equation (1.1) that{
e(h)
(
∂th + (u · ∇)h

)
+ ∇ · u = 0,

∂tu + (u · ∇)u + 1
ε2
∇h = −Au,

(2.2)

where
e(h) =

1
(γ − 1)h

is a smooth functions of h > 0.
In this paper, we will consider the perturbative solutions of the above equations. Thus we choose

the constant equilibrium state (h∗, 0) with h∗ > 0 and set

h = h∗ + εq.

The system satisfied by q and u is{
e(h)
(
∂tq + (u · ∇)q

)
+ 1
ε
∇ · u = 0,

∂tu + (u · ∇)u + 1
ε
∇q = −Au.

(2.3)
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Initial data is given by

q(t = 0) = q0(x), u(t = 0) = u0(x). (2.4)

For fixed ε > 0, it has been proved by many authors, c.f. [11,31], that (2.3)–(2.4) admits a global clas-
sical solution provided that the certain Sobolev norm of the initial data is sufficiently small. Namely,
we have the following global existence theorem.

Theorem 2.1. For any fixed ε > 0, suppose that the initial data (q0(x), u0(x)) ∈ H s(T3) with s ≥ 3
and ∥(q0(x), u0(x))∥Hs(T3) is sufficiently small. Then there exists a unique, global, classical solution
(qε(x, t), uε(x, t)) to the Cauchy problem of (2.3)–(2.4).

The aim of the present paper is to show that the sequences of the solution (qε(x, t), uε(x, t)) actually
converge to the solution of a limit system for all time. The key step is to establish the uniform estimates
both in Mach number and time.

3. Uniform estimates

In this part, we are going to prove the uniform estimates of the solution. To this end, we define a
weighted norm

E(w) = ∥w∥2H3 + ∥∂tw∥2H2 + ε
2∥∂ttw∥2H1 + ε

4∥∂tttw∥2. (3.1)

First, we have the following estimate.

Lemma 3.1. If U = (q, u) ∈ C([0,T ]; H3) is a solution of the system (2.3)–(2.4) for any given T > 0,
then we have

d
dt

E(U) + AE(u) ≤ CE(U)
3
2 . (3.2)

Proof. The proof is divided into two parts. First, we will show that

d
dt
∥U∥2H3 + A∥u∥2H3 ≤ CE(U)

3
2 . (3.3)

Second, we shall prove that

d
dt

3∑
k=1

ε2k−2∥∂k
t U∥

2
H3−k + A

3∑
k=1

ε2k−2∥∂k
t u∥

2
H3−k ≤ CE(U)

3
2 . (3.4)

Thus, by the definition of the functional E(U), it is obvious that (3.2) holds.
Part I: For 0 ≤ |α| ≤ 3, applying ∂αx to (2.3) and testing by ∂αx U gives∫

T3
e(h)
(
∂t∂
α
x q + (u · ∇)∂αx q

)
∂αx qdx +

∫
T3

(
∂t∂
α
x u + (u · ∇)∂αx u

)
· ∂αx udx

+ A
∫
T3
∂αx u∂αx udx =

∫
T3
C1∂

α
x qdx +

∫
T3
C2 · ∂

α
x udx, (3.5)
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where the singular terms are cancelled by integration by parts and the commutators C1 and C2 are given
by

C1 = −[∂αx , e(h)]∂tq − [∂αx , e(h)u · ∇]q
C2 = −[∂αx , u · ∇]u.

By direct calculation, we get∫
T3

e(h)
(
∂t∂
α
x q + (u · ∇)∂αx q

)
∂αx qdx

=
1
2

d
dt

∫
T3

e(h)|∂αx q|2dx −
1
2

∫
T3
∂te(h)|∂αx q|2dx

−
1
2

∫
T3
∇ · (e(h)u)|∂αx q|2dx

and ∫
T3

(
∂t∂
α
x u + (u · ∇)∂αx u

)
· ∂αx udx

=
1
2

d
dt

∫
T3
|∂αx u|2dx −

1
2

∫
T3
∇ · u|∂αx u|2dx.

Combining the above two equalities with (3.5), one finds

1
2

d
dt

∫
T3

e(h)|∂αx q|2dx +
1
2

d
dt

∫
T3
|∂αx u|2dx + A

∫
T3
∂αx u∂αx udx

≤
1
2
|

∫
T3
∂te(h)|∂αx q|2dx| +

1
2
|

∫
T3
∇ · (e(h)u)|∂αx q|2dx|

+
1
2
|

∫
T3
∇ · u|∂αx u|2dx| + |

∫
T3
C1∂

α
x qdx +

∫
T3
C2 · ∂

α
x udx|. (3.6)

Clearly, the first three terms on the right-hand side of (3.6) can be controlled by

∥∂te(h)∥L∞∥∂αx q∥2 + ∥∇ · (e(h)u)∥L∞∥∂αx q∥2 + ∥∇ · u∥L∞∥∂αx u∥2

≤ CE(U)
3
2 , (3.7)

where standard Sobolev embedding inequalities are used here. The commutator estimates is given by

|

∫
T3
C1∂

α
x qdx| = |

∫
T3

{
[∂αx , e(h)]∂tq − [∂αx , e(h)u · ∇]q

}
∂αx qdx|

≤
∑

β+γ=α,|β|>0

Cβα

∫
T3

[
|∂βxe(h)∂γx∂tq| + |∂βx(e(h)u)∂γx∇q|

]
∂αx qdx.

We only consider the case |α| = 3, because other cases are relatively easy to deal with. When |β| =
1, |γ| = 2, we have ∫

T3

[
|∂βxe(h)∂γx∂tq| + |∂βx(e(h)u)∂γx∇q|

]
∂αx qdx
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≤ C
[
∥∂βxe(h)∥L∞∥∂γx∂tq∥ + ∥∂βx(e(h)u)∥L∞∥∂γx∇q∥

]
∥∂αx q∥

≤ CE(U)
3
2 . (3.8)

When |β| = 2, |γ| = 1,∫
T3

[
|∂βxe(h)∂γx∂tq| + |∂βx(e(h)u)∂γx∇q|

]
∂αx qdx

≤ C
[
∥∂βxe(h)∥L3∥∂γx∂tq∥L6 + ∥∂βx(e(h)u)∥L3∥∂γx∇q∥L6

]
∥∂αx q∥

≤ C
[
∥∇∂βxe(h)∥∥∇∂γx∂tq∥ + ∥∇∂βx(e(h)u)∥∥∇∂γx∇q∥

]
∥∂αx q∥

≤ CE(U)
3
2 . (3.9)

When |β| = 3, |γ| = 0, ∫
T3

[
|∂βxe(h)∂γx∂tq| + |∂βx(e(h)u)∂γx∇q|

]
∂αx qdx

≤ C
[
∥∂βxe(h)∥∥∂tq∥L∞ + ∥∂βx(e(h)u)∥∥∇q∥L∞

]
∥∂αx q∥

≤ CE(U)
3
2 . (3.10)

Collecting (3.8)–(3.10), we get the following estimate

|

∫
T3
C1∂

α
x qdx| ≤ CE(U)

3
2 .

In a similar fashion, one can show that

|

∫
T3
C2 · ∂

α
x udx| ≤ CE(U)

3
2 .

Substituting the commutator estimates and (3.7) into (3.6) and taking summation over 0 ≤ |α| ≤ 3, we
get

d
dt
∥U∥2H3 + A∥u∥2H3 ≤ CE(U)

3
2 . (3.11)

This completes the proof of the first part.
Part II: For 1 ≤ k ≤ 3 and k + |α| ≤ 3, applying ∂k

t ∂
α
x to (2.3) and testing by ε2k−2∂k

t ∂
α
x U gives

ε2k−2
∫
T3

e(h)
(
∂t∂

k
t ∂
α
x q + (u · ∇)∂k

t ∂
α
x q
)
∂k

t ∂
α
x qdx

+ ε2k−2
∫
T3

(
∂t∂

k
t ∂
α
x u + (u · ∇)∂k

t ∂
α
x u
)
· ∂k

t ∂
α
x udx

+ Aε2k−2
∫
T3
∂k

t ∂
α
x u∂k

t ∂
α
x udx = ε2k−2

∫
T3
C3∂

k
t ∂
α
x qdx

+ ε2k−2
∫
T3
C4 · ∂

k
t ∂
α
x udx, (3.12)
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where

C3 = −[∂k
t ∂
α
x , e(h)]∂tq − [∂k

t ∂
α
x , e(h)u · ∇]q,

C4 = −[∂k
t ∂
α
x , u · ∇]u.

By integrating by parts, we still have

ε2k−2 d
dt

∫
T3

[
e(h)|∂k

t ∂
α
x q|2 + |∂k

t ∂
α
x u|2
]
dx + Aε2k−2

∫
T3
|∂k

t ∂
α
x u|2dx

≤ ε2k−2
∫
T3
C3∂

k
t ∂
α
x qdx + ε2k−2

∫
T3
C4 · ∂

k
t ∂
α
x udx +CE(U)

3
2 . (3.13)

It remains to give the estimates of the commutators. Basically, the commutator estimates is similar to
(3.8)–(3.10) except that we need to guarantee there are enough powers of ε to balance the norms of the
unknowns. We should be careful when we encountered with higher time derivatives. For example, the
estimate of the first term in C3 will involve

∥∂2
t q∂αx e(h)∥,

with |α| = 2. The definition of E(U) suggests that there should be a ε to balance ∂2
t q. Fortunately, since

h = h∗ + εq, taking derivative to e(h) will give us an additional ε. The other terms in the commutator
is similar, we just omit the details for the sake of simplicity.

Using the strategy we explained above to estimate the commutators, we get

εk−1∥C3∥ + ε
k−1∥C4∥ ≤ CE(U). (3.14)

Combined with (3.13), one has

ε2k−2 d
dt
[
∥∂k

t ∂
α
x q∥2 + ∥∂k

t ∂
α
x u∥2
]
+ Aε2k−2∥∂k

t ∂
α
x u∥2dx

≤ CE(U)
3
2 . (3.15)

By taking summation over 1 ≤ k ≤ 3 and k + |α| ≤ 3, we get the desired results (3.4). This completes
the proof of Lemma 3.1. □

Next, we have the following lemma.

Lemma 3.2. If U = (q, u) ∈ C([0,T ]; H3) is a solution of the system (2.3)–(2.4), then

1
ε2 ∥q∥

2
H3 ≤ C(∥ut∥

2
H2 + ∥u∥2H2) +CE(U)2 ≤ CE(u) +CE(U)2, (3.16)

and

d
dt

∑
0≤|α|+k≤2

ε2k
∫
T3

[
∂k+1

t ∂
α
x u · ∂k

t ∂
α
x u + (u · ∇)∂k

t ∂
α
x u · ∂k

t ∂
α
x u
]
dx

+
∑

0≤|α|+k≤2

ε2k∥∂k+1
t ∂

α
x q∥2

≤ CE(u) +CE(U)
3
2 . (3.17)
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Proof. For 0 ≤ |α| ≤ 2, taking ∂αx to the second equation of (2.3) yields

∂αx
[
∂tu + (u · ∇)u

]
+

1
ε
∇∂αx q = −A∂αx u. (3.18)

This further gives

1
ε2 ∥∇∂

α
x q∥2 ≤ ∥∂αx

[
∂tu + (u · ∇)u

]
∥2 + A∥∂αx u∥2. (3.19)

Taking summation over 0 ≤ |α| ≤ 2 gives

1
ε2 ∥q∥

2
H3 ≤ C(∥ut∥

2
H2 + ∥u∥2H2) +CE(U)2, (3.20)

where we have used the Poincaré inequality to control ∥q∥L2 .
Next, for 0 ≤ k + |α| ≤ 2, taking ∂k

t ∂
α
x to the first equation of (2.3) gives

e(h)
(
∂k+1

t ∂
α
x q + (u · ∇)∂k

t ∂
α
x q
)
+

1
ε
∇ · ∂k

t ∂
α
x u = C5, (3.21)

where the commutator C5 is given by

C5 = −[∂k
t ∂
α
x , e(h)]∂tq − [∂k

t ∂
α
x , e(h)u · ∇]q.

Then, multiplying the above equation by ∂k+1
t ∂

α
x q and integrating over T3, we have∫

T3
e(h)|∂k+1

t ∂
α
x q|2dx +

∫
T3

e(h)(u · ∇)∂k
t ∂
α
x q∂k+1

t ∂
α
x qdx

+
1
ε

∫
T3
∇ · ∂k

t ∂
α
x u∂k+1

t ∂
α
x qdx =

∫
T3
C5∂

k+1
t ∂

α
x qdx. (3.22)

Applying ∂k+1
t ∂

α
x to the second equation of (2.3) gives

∂k+2
t ∂

α
x u + (u · ∇)∂k+1

t ∂
α
x u +

1
ε
∇∂k+1

t ∂
α
x q = −A∂k+1

t ∂
α
x u + C6, (3.23)

with

C6 = [∂k+1
t ∂

α
x , u · ∇]u. (3.24)

Multiplying the above equation by ∂k
t ∂
α
x u and integrating over T3, one has∫

T3
∂k+2

t ∂
α
x u · ∂k

t ∂
α
x udx +

∫
T3

(u · ∇)∂k+1
t ∂

α
x u · ∂k

t ∂
α
x udx

+
1
ε

∫
T3
∇∂k+1

t ∂
α
x q∂k

t ∂
α
x udx

= −A
∫
T3
∂k+1

t ∂
α
x u∂k

t ∂
α
x udx +

∫
T3
C6∂

k
t ∂
α
x udx. (3.25)
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Adding (3.22) to (3.25), then multiplying by ε2k yields

ε2k
∫
T3

e(h)|∂k+1
t ∂

α
x q|2dx = −ε2k

∫
T3

e(h)(u · ∇)∂k
t ∂
α
x q∂k+1

t ∂
α
x qdx

−ε2k
∫
T3
∂k+2

t ∂
α
x u · ∂k

t ∂
α
x udx − ε2k

∫
T3

(u · ∇)∂k+1
t ∂

α
x u · ∂k

t ∂
α
x udx

− Aε2k
∫
T3
∂k+1

t ∂
α
x u∂k

t ∂
α
x udx + ε2k

∫
T3
C5∂

k+1
t ∂

α
x q

+ ε2k
∫
T3
C6∂

k
t ∂
α
x udx ≡

6∑
j=1

I j. (3.26)

Each term on the right-hand side of the above equality need to be estimated now. For I1, we have

|I1| ≤ ε
2k∥e(h)u∥L∞∥∂k

t∇∂
α
x q∥∥∂k+1

t ∂
α
x q∥ ≤ CE(U)

3
2 .

The second term I2 can be reformulated into

I2 = −ε
2k d

dt

∫
T3
∂k+1

t ∂
α
x u · ∂k

t ∂
α
x udx + ε2k

∫
T3
|∂k+1

t ∂
α
x u|2dx.

Similarly, we have

I3 = −ε
2k d

dt

∫
T3

(u · ∇)∂k
t ∂
α
x u · ∂k

t ∂
α
x udx

+ ε2k
∫
T3

(∂tu · ∇)∂k
t ∂
α
x u · ∂k

t ∂
α
x udx + ε2k

∫
T3

(u · ∇)∂k
t ∂
α
x u · ∂k+1

t ∂
α
x udx.

While for I4, it is easy to find that

|I4| ≤ Cε2k∥∂k+1
t ∂

α
x u∥∥∂k

t ∂
α
x u∥ ≤ CE(u).

For the estimates of the commutators, we mention that there are enough powers of ε to balance the
time derivatives of the solution. Thus, I5 and I6 can be handled in a similar way as Lemma 3.1. For
simplicity, we omit the details of the estimates and give

|I5| + |I6| ≤ CE(U)
3
2 .

Finally, putting the above estimates of I j into (3.26) and taking summation over0 ≤ k + |α| ≤ 2, we get

d
dt

∑
0≤|α|+k≤2

ε2k
∫
T3

[
∂k+1

t ∂
α
x u · ∂k

t ∂
α
x u + (u · ∇)∂k

t ∂
α
x u · ∂k

t ∂
α
x u
]
dx

+ ε2k
∑

0≤|α|+k≤2

∫
T3

e(h)|∂k+1
t ∂

α
x q|2dx

≤ CE(u) +CE(U)
3
2 . (3.27)

This completes the proof of Lemma 3.2. □
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Now, following the two lemmas above, we are ready to give the uniform estimates of the solutions.
Multiplying (3.16) and (3.17) by a sufficiently small constant κ, adding them onto (3.2), we get

d
dt

[
E(U) + κ

∑
0≤|α|+k≤2

ε2k
∫
T3

[
∂k+1

t ∂
α
x u · ∂k

t ∂
α
x u + (u · ∇)∂k

t ∂
α
x u · ∂k

t ∂
α
x u
]
dx
]

+ AE(u) +
κ

ε2 ∥q∥
2
H3 + κ

∑
0≤|α|+k≤2

ε2k∥∂k+1
t ∂

α
x q∥2

≤ CκE(u) +CE(U)3/2 +CE(U)2. (3.28)

Notice that the first term CκE(u) on the right-hand side of (3.28) can be absorbed by AE(u) due to the
smallness of κ, thus one has

d
dt

Ẽ(U) + c1E(U) +
c2

ε2 ∥q∥
2
H3 ≤ CE(U)3/2 +CE(U)2, (3.29)

where

Ẽ(U) = E(U)

+ κ
∑

0≤|α|+k≤2

ε2k
∫
T3

[
∂k+1

t ∂
α
x u · ∂k

t ∂
α
x u + (u · ∇)∂k

t ∂
α
x u · ∂k

t ∂
α
x u
]
dx.

Now, assume a priori that
E(U) ≤ δ,

with δ being sufficiently small. Then by the smallness of ε and κ, we find that Ẽ(U) is equivalent to
E(U). Namely, there exist positive constant c3 and c4 such that

c3E(U) ≤ Ẽ(U) ≤ c4E(U). (3.30)

Moreover, since δ is small, we find all the terms on the right-hand side of (3.29) can be absorbed by
the c1E(U). This gives

Ẽ(U(t)) + c5

∫ t

0

[
E(U(τ)) +

1
ε2 ∥q(τ)∥2H3

]
dτ ≤ Ẽ(U0). (3.31)

Thus if we assume that the initial data is sufficiently small such that

E(U0) ≤ δ0 <
c3

c4
δ,

we can get from (3.30) and (3.31) that

c3E(U) ≤ Ẽ(U(t)) ≤ Ẽ(U0) ≤ c4E(U0) ≤ c3δ.

This closes the a priori assumption and we get the uniform estimates of the solution. In a word, we
have proved:

Theorem 3.3. Suppose that the initial data (q0(x), u0(x)) ∈ H3(T3). Then there exist positive constants
δ0 and ε0 such that if

E(U0) ≤ δ0

and 0 < ε < ε0 hold, system (2.3)–(2.4) admits a global classical solution (q(x, t), u(x, t)) satisfying

E(U(t)) + c
∫ t

0

[
E(U(τ)) +

1
ε2 ∥q(τ)∥2H3

]
dτ ≤ Cδ0, (3.32)

for all t ∈ R+.
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4. Convergence

With the uniform estimates established in previous section, we shall study the convergence of the
solution in this section.

Actually, from the uniform estimates (3.32) and the Aubin-Lions compactness lemma, we can find
a limit function

u0 ∈ L∞(R+; H3(T3)) ∩C(R+; H3−η(T3))

with η > 0 such that, by passing to a subsequence,

uε → u0, weak∗ in L∞(R+; H3(T3)), (4.1)
uε → u0, strongly in C(R+; H3−η(T3)). (4.2)

Let P be the orthogonal projection of (L2(Ω)
)3 onto the subspace

Hσ =
{
u ∈ (L2(Ω)

)3∣∣∣∣ ∫
Ω

u · ∇ϕdx = 0,∀ϕ ∈ H1(Ω)
}
.

Applying P to the second equation of (2.3) yields

P[∂tuε + (uε · ∇)uε + Auε] = 0.

Letting ε goes to zero in the above equations and using (4.1), (4.2), one has

P[∂tu0 + (u0 · ∇)u0 + Au0] = 0.

By the properties of P, there exists a function π0 ∈ L∞(R+; H3(T3)) such that

∂tu0 + (u0 · ∇)u0 + Au0 = −∇π0. (4.3)

On the other hand, the first equation in (2.3) gives

εe(hε)
(
∂tqε + (uε · ∇)qε

)
+ ∇ · uε = 0.

The uniform estimates (3.32) enables us to take ε→ 0 in the above equation to get

∇ · u0 = 0. (4.4)

Equations (4.3) and (4.4) constitute the limit system
∂tu0 + (u0 · ∇)u0 + Au0 = −∇π0,

∇ · u0 = 0,

u0|t=0 = u0
0(x),

(4.5)

where the initial data u0
0(x) is given by ∥uε0 − u0

0(x)∥H3 → 0 as ε→ 0.

Electronic Research Archive Volume 30, Issue 1, 126–139.



137

Conflict of interest

The author declares there is no conflict of interest.

References

1. S. Geng, Y. Lin, M. Mei, Asymptotic behavior of solutions to Euler equations with
time-dependent damping in critical case, SIAM J. Math. Ana., 52 (2020), 1463–1488.
https://doi.org/10.1137/19M1272846

2. D. Bresch, B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water
equations and convergence to the quasi-geostrophic model, Commun. Theor. Phys., 238 (2003),
211–223. https://doi.org/10.1007/s0022000308598

3. T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math.
Phys., 101 (1985), 475–485. https://doi.org/10.1007/BF01210741

4. X. Ding, G-Q. Chen, P. Z. Luo, Convergence of the fraction step Lax-Friedrichs scheme and
Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys., 121 (1989) 63–
84. https://doi.org/10.1007/BF01218624

5. F. Huang, R. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equa-
tions with vacuum, J. Differ. Equ., 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012

6. F. Huang, P. Marcati, R. Pan, Convergence to the Barenblatt solution for the compressible
Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24.
https://doi.org/10.1007/s002050040349y

7. F. Huang, R. Pan, Convergence rate for compressible Euler equations with damping and vacuum,
Arch. Ration. Mech. Anal., 166 (2003) 359–376. https://doi.org/10.1007/s0020500202345

8. L. Hsiao, T.P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of
hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599–605.
https://doi.org/10.1007/BF02099268

9. K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system
of hyperbolic conservation laws with damping, J. Differ. Equ., 131 (1996), 171–188.
https://doi.org/10.1006/jdeq.1996.0159

10. K. Nishihara, W. Wang, T. Yang, Lp-convergence rate to nonlinear diffusion waves for p-system
with damping, J. Differ. Equ., 161 (2000), 191–218. https://doi.org/10.1006/jdeq.1999.3703

11. W. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in
multi-dimensions, J. Differ. Equ., 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937

12. H. Zhao, Convergence to strong nonlinear diffusion waves for solutions of p-system with damping,
J. Differ. Equ., 174 (2001), 200–236. https://doi.org/10.1006/jdeq.2000.3936

13. H. Cui, J. Gao, L. Yao, Asymptotic behavior of the one-dimensional compressible micropolar fluid
model, Electron. Res. Arch., 29 (2021), 2063. https://doi.org/10.3934/era.2020105

14. F. Hou, H. Yin, On global axisymmetric solutions to 2D compressible full Euler equations of Chap-
lygin gases, Discrete Contin. Dyn Syst, 40 (2020), 1435. https://doi.org/10.3934/dcds.2020083

Electronic Research Archive Volume 30, Issue 1, 126–139.

http://dx.doi.org/https://doi.org/10.1137/19M1272846
http://dx.doi.org/https://doi.org/10.1007/s00220\protect \discretionary {\char \hyphenchar \font }{}{}003\protect \discretionary {\char \hyphenchar \font }{}{}0859\protect \discretionary {\char \hyphenchar \font }{}{}8
http://dx.doi.org/https://doi.org/10.1007/BF01210741
http://dx.doi.org/https://doi.org/10.1007/BF01218624
http://dx.doi.org/https://doi.org/10.1016/j.jde.2005.03.012
http://dx.doi.org/https://doi.org/10.1007/s00205\protect \discretionary {\char \hyphenchar \font }{}{}004\protect \discretionary {\char \hyphenchar \font }{}{}0349\protect \discretionary {\char \hyphenchar \font }{}{}y
http://dx.doi.org/https://doi.org/10.1007/s00205\protect \discretionary {\char \hyphenchar \font }{}{}002\protect \discretionary {\char \hyphenchar \font }{}{}0234\protect \discretionary {\char \hyphenchar \font }{}{}5
http://dx.doi.org/https://doi.org/10.1007/BF02099268
http://dx.doi.org/https://doi.org/10.1006/jdeq.1996.0159
http://dx.doi.org/https://doi.org/10.1006/jdeq.1999.3703
http://dx.doi.org/https://doi.org/10.1006/jdeq.2000.3937
http://dx.doi.org/https://doi.org/10.1006/jdeq.2000.3936
http://dx.doi.org/https://doi.org/10.3934/era.2020105
http://dx.doi.org/https://doi.org/10.3934/dcds.2020083


138

15. Y. Hu, F. Li, On a degenerate hyperbolic problem for the 3-D steady full Euler equations with axial-
symmetry, Adv. Nonlinear Ana., 10 (2021), 584–615. https://doi.org/10.1515/anona20200148

16. J. Li, J. Shen, G. Xu, The global supersonic flow with vacuum state in a 2D convex duct, Electron.
Res. Arch., 29 (2021), 2077. https://doi.org/10.3934/era.2020106

17. M. Li, X. Pu, S. Wang, Quasineutral limit for the compressible two-fluid Euler
CMaxwell equations for well-prepared initial data, Electron. Res. Arch., 28 (2020), 879.
https://doi.org/10.3934/era.2020046

18. J. Lian, Global well-posedness of the free-interface incompressible Euler equations with damping,
Discrete Contin. Dyn. Syst., 40 (2020), 2061. https://doi.org/10.3934/dcds.2020106

19. S. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters
and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34 (1981), 481–
524. https://doi.org/10.1002/cpa.3160340405

20. S. Klainerman, A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math.,
35 (1982), 629–651. https://doi.org/10.1002/cpa.3160350503

21. S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math.
Kyoto Univ., 26 (1986), 323–331. https://doi.org/10.1215/kjm/1250520925

22. S. Schochet, Fast singular limits of hyperbolic PDEs, J. Differ. Equ., 114 (1994), 476–512.
https://doi.org/10.1006/jdeq.1994.1157

23. T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary
conditions, Adv. Differ. Equ., 10 (2005), 19–44.

24. G. Métivier, S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch.
Ration. Mech. Anal., 158 (2001), 61–90. https://doi.org/10.1007/PL00004241

25. G. Métivier, S. Schochet, Averaging theorems for conservative systems and the weakly com-
pressible Euler equations, J. Differ. Equ., 187 (2003), 106–183. https://doi.org/10.1016/S0022-
0396(02)000372

26. P. L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid, J. Math. Pures
Appl., 77 (1998), 585–627. https://doi.org/10.1016/S00217824(98)801396

27. B. Desjardins, E. Grenier, P. L. Lions, N. Masmoudi, Incompressible limit for solutionsof the
isentropic navier Cstokes equationswith dirichlet boundary conditions, J. Math. Anal. Appl., 78
(1999), 461–471. https://doi.org/10.1016/S00217824(99)00032X

28. H. Bessaih, Limite de modeles de fluides compressibles, Port. Math., 52 (1995), 441–464.

29. Y. Ou, Incompressible limits of the Navier CStokes equations for all time, J. Differ. Equ., 247
(2009), 3295–3314. https://doi.org/10.1016/j.jde.2009.05.009

30. C. M. Dafermos, R. Pan, Global BV solutions for the p-system with frictional damping, SIAM J.
Math. Anal., 41 (2009), 1190–1205. https://doi.org/10.1137/080735126

31. T. C. Sideris, B. Thomases, D. Wang, Long time behavior of solutions to the 3D com-
pressible Euler equations with damping, Commun. Partial. Differ. Equ. , 28 (2003), 795–816.
https://doi.org/10.1081/PDE120020497

Electronic Research Archive Volume 30, Issue 1, 126–139.

http://dx.doi.org/https://doi.org/10.1515/anona\protect \discretionary {\char \hyphenchar \font }{}{}2020\protect \discretionary {\char \hyphenchar \font }{}{}0148
http://dx.doi.org/https://doi.org/10.3934/era.2020106
http://dx.doi.org/https://doi.org/10.3934/era.2020046
http://dx.doi.org/https://doi.org/10.3934/dcds.2020106
http://dx.doi.org/https://doi.org/10.1002/cpa.3160340405
http://dx.doi.org/https://doi.org/10.1002/cpa.3160350503
http://dx.doi.org/https://doi.org/10.1215/kjm/1250520925
http://dx.doi.org/https://doi.org/10.1006/jdeq.1994.1157
http://dx.doi.org/https://doi.org/10.1007/PL00004241
http://dx.doi.org/https://doi.org/10.1016/S0022\protect \discretionary {\char \hyphenchar \font }{}{}0396(02)00037\protect \discretionary {\char \hyphenchar \font }{}{}2
http://dx.doi.org/https://doi.org/10.1016/S0022\protect \discretionary {\char \hyphenchar \font }{}{}0396(02)00037\protect \discretionary {\char \hyphenchar \font }{}{}2
http://dx.doi.org/https://doi.org/10.1016/S0021\protect \discretionary {\char \hyphenchar \font }{}{}7824(98)80139\protect \discretionary {\char \hyphenchar \font }{}{}6
http://dx.doi.org/https://doi.org/10.1016/S0021\protect \discretionary {\char \hyphenchar \font }{}{}7824(99)00032\protect \discretionary {\char \hyphenchar \font }{}{}X
http://dx.doi.org/https://doi.org/10.1016/j.jde.2009.05.009
http://dx.doi.org/https://doi.org/10.1137/080735126
http://dx.doi.org/https://doi.org/10.1081/PDE\protect \discretionary {\char \hyphenchar \font }{}{}120020497


139

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 30, Issue 1, 126–139.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Reformulation of the problem
	Uniform estimates
	Convergence

