We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.
Citation: Lie Fu, Victoria Hoskins, Simon Pepin Lehalleur. Motives of moduli spaces of rank $ 3 $ vector bundles and Higgs bundles on a curve[J]. Electronic Research Archive, 2022, 30(1): 66-89. doi: 10.3934/era.2022004
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.
[1] | S. del Baño, On the Chow motive of some moduli spaces, J. Reine Angew. Math., 532 (2001), 105–132. https://doi.org/10.1515/crll.2001.019 doi: 10.1515/crll.2001.019 |
[2] | E. Bifet, F. Ghione, M. Letizia, On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann., 299 (1994), 641–672. https://doi.org/10.1007/BF01459804 doi: 10.1007/BF01459804 |
[3] | K. Behrend, A. Dhillon, On the motivic class of the stack of bundles, Adv. Math., 212 (2007), 617–644. https://doi.org/10.1016/j.aim.2006.11.003 doi: 10.1016/j.aim.2006.11.003 |
[4] | V. Hoskins, S. Pepin Lehalleur, A formula for the Voevodsky motive of the moduli stack of vector bundles on a curve, (2020), preprint, arXiv: 1809.02150. |
[5] | O. García-Prada, J. Heinloth, A. Schmitt, On the motives of moduli of chains and Higgs bundles, J. Eur. Math. Soc., 16 (2014), 2617–2668. https://doi.org/10.4171/JEMS/494 doi: 10.4171/JEMS/494 |
[6] | N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc., 55 (1987), 59–126. https://doi.org/10.1112/plms/s3-55.1.59 doi: 10.1112/plms/s3-55.1.59 |
[7] | P. Gothen, The Betti numbers of the moduli space of stable rank $3$ Higgs bundles on a Riemann surface, Internat. J. Math., 5 (1994), 861–875. https://doi.org/10.1142/S0129167X94000449 doi: 10.1142/S0129167X94000449 |
[8] | C. Simpson, The Hodge filtration on nonabelian cohomology, preprint, arXiv: alg-geom/9604005. |
[9] | V. Hoskins, S. Pepin Lehalleur, On the Voevodsky motive of the moduli space of higgs bundles on a curve, Sel. Math., 27 (2021), 1–37. https://doi.org/10.1007/s00029-020-00610-5 doi: 10.1007/s00029-020-00610-5 |
[10] | L. Fu, V. Hoskins, S. Pepin Lehalleur, Motives of moduli spaces of bundles on curves via variation of stability and flips, preprint, arXiv: 2011.14872. |
[11] | T. Gómez, K. S. Lee, Motivic decompositions of moduli spaces of vector bundles on curves, preprint, arXiv: 2007.06067. |
[12] | S. I. Kimura, Chow groups are finite dimensional, in some sense, Math. Ann., 331 (2005), 173–201. https://doi.org/10.1007/s00208-004-0577-3 doi: 10.1007/s00208-004-0577-3 |
[13] | M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math., 117 (1994), 317–353. https://doi.org/10.1007/BF01232244 doi: 10.1007/BF01232244 |
[14] | V. Voevodsky, Triangulated categories of motives over a field, Ann. Math. Stud., 143 (2000), 188–238. |
[15] | U. Jannsen, Motives, numerical equivalence, and semi-simplicity, Invent. Math., 107 (1992), 447–452. https://doi.org/10.1007/BF01231898 |
[16] | Y. André, Motifs de dimension finie, Séminaire Bourbaki., 299 (2005), 115–145. |
[17] | S. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differ. Geom., 33 (1991), 169–213. https://doi.org/10.4310/jdg/1214446034 doi: 10.4310/jdg/1214446034 |
[18] | Q. Jiang, On the Chow theory of projectivization, preprint, arXiv: 1910.06730. |
[19] | K. Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math., 113 (1993), 85–102. https://doi.org/10.1007/BF01244303 doi: 10.1007/BF01244303 |
[20] | A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math., 98 (1973), 480–497. https://doi.org/10.24033/asens.2105 doi: 10.24033/asens.2105 |
[21] | A. Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci., 115 (2005), 15–49. https://doi.org/10.1007/BF02829837 doi: 10.1007/BF02829837 |
[22] | L. Álvarez Cónsul, O. García-Prada, A. H. W. Schmitt, On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces, Int. Math. Res. Pap., 2006 (2006), 73597. https://doi.org/10.1155/IMRP/2006/73597 doi: 10.1155/IMRP/2006/73597 |
[23] | Y. André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Société mathématique de France, (2004). |
[24] | T. Hausel, M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math., 153 (2003), 197–229. https://doi.org/10.1007/s00222-003-0286-7 |
[25] | M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc., 9 (1996), 691–723. https://doi.org/10.1090/S0894-0347-96-00204-4 doi: 10.1090/S0894-0347-96-00204-4 |
[26] | P. Belmans, pbelmans/hodge-diamond-cutter: Initial release, Zenodo, v1.0 (2020). https://doi.org/10.5281/zenodo.3893510 |