This is an expository text, originally intended for the ANR 'Hodgefun' workshop, twice reported, organised at Florence, villa Finaly, by B. Klingler. We show that holomorphic foliations on complex projective manifolds have algebraic leaves under a certain positivity property: the 'non pseudoeffectivity' of their duals. This permits to construct certain rational fibrations with fibres either rationally connected, or with trivial canonical bundle, of central importance in birational geometry. A considerable extension of the range of applicability is due to the fact that this positivity is preserved by the tensor powers of the tangent bundle. The results presented here are extracted from [
Citation: Frédéric Campana. Algebraicity of foliations on complex projective manifolds, applications[J]. Electronic Research Archive, 2022, 30(4): 1187-1208. doi: 10.3934/era.2022063
This is an expository text, originally intended for the ANR 'Hodgefun' workshop, twice reported, organised at Florence, villa Finaly, by B. Klingler. We show that holomorphic foliations on complex projective manifolds have algebraic leaves under a certain positivity property: the 'non pseudoeffectivity' of their duals. This permits to construct certain rational fibrations with fibres either rationally connected, or with trivial canonical bundle, of central importance in birational geometry. A considerable extension of the range of applicability is due to the fact that this positivity is preserved by the tensor powers of the tangent bundle. The results presented here are extracted from [
[1] | F. Campana, M. Păun, Foliations with positive movable slope, Publ. Math. IHÉS, 219 (2019), 1â€"49. |
[2] | F. Bogomolov, M. McQuillan, Rational curves on foliated varieties. In Foliation theory in algebraic geometry, (pp. 21â€"51). Springer, Cham. https://doi.org/10.1007/978-3-319-24460-0_2 |
[3] | F. Campana, T. Peternell, Geometric stability of the cotangent bundle and the universal cover of a projective manifold, Bull. SMF, 139 (2011), 41â€"74. https://doi.org/10.24033/bsmf.2599 doi: 10.24033/bsmf.2599 |
[4] | Y. Miyaoka, Deformations of a morphism along a foliation and applications, Algebraic Geometry Bowdoin, (1985), 245â€"268. https://doi.org/10.1090/pspum/046.1/927960 |
[5] | S. Druel, A decomposition theorem for singular spaces with trivial canonical class of dimension at most five, Inv. Math., 211 (2018), 245â€"296. https://doi.org/10.1007/s00222-017-0748-y doi: 10.1007/s00222-017-0748-y |
[6] | B. Bakker, H. Guenancia, C. Lehn, Algebraic approximation and the decomposition theorem for Kähler Calabi-Yau varieties, arXiv preprint, (2020), arXiv: 2012.00441. |
[7] | S. Boucksom, J. P. Demailly, M. Păun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Alg. Geom., 22 (2013), 201â€"248. https://doi.org/10.1090/S1056-3911-2012-00574-8 doi: 10.1090/S1056-3911-2012-00574-8 |
[8] | J. Ottem, On subvarieties with ample normal bundle, J. Eur. Math. Soc., 18 (2016), 2459â€"2468. https://doi.org/10.4171/JEMS/644 doi: 10.4171/JEMS/644 |
[9] | T. Peternell, Compact subvarieties with ample normal bundles, algebraicity, and cones of cycles, Mich. Math. J., 61 (2012), 875â€"889. https://doi.org/10.1307/mmj/1353098517 doi: 10.1307/mmj/1353098517 |
[10] | N. Nakayama, Zariski decomposition and Abundance, Volume 14 Tokyo, The Mathematical Society of Japan, 2004. |
[11] | Y. Miyaoka, S. Mori, A numerical criterion for uniruledness, Ann. Math., 124 (1986), 65â€"69. https://doi.org/10.2307/1971387 doi: 10.2307/1971387 |
[12] | D. Mumford, Hilbert fourteenth problem-the infinite generation of subrings such as rings of invariants, Proc. Symp. Pure Math., 28 (1976), 431â€"443. https://doi.org/10.1090/pspum/028.2/0435076 doi: 10.1090/pspum/028.2/0435076 |
[13] | S. Kobayashi, Differential geometry of vector bundles, Publ. Math. Soc. Japan., 15 (1987). https://doi.org/10.1515/9781400858682 |
[14] | D. Greb, S. Kebekus, T. Peternell, Movable curves and semistable sheaves, IMRN (2016), 536â€"570. |
[15] | J. Li, S. T. Yau, Hermitian Yang-Mills connections on non-Kähler manifolds, in Mathematical aspects of String theory, (1987), 560â€"573. https://doi.org/10.1142/9789812798411_0027 |
[16] | M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondance, World Sc. Publish. 1995. https://doi.org/10.1142/2660 |
[17] | T. Graber, J. Harris, J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc., 16 (2003), 57â€"67. https://doi.org/10.1090/S0894-0347-02-00402-2 doi: 10.1090/S0894-0347-02-00402-2 |
[18] | F. Gounelas, Free curves on varieties, Doc. Math., 21 (2016), 287â€"308. |
[19] | E. Viehweg, K. Zuo, Base spaces of non-isotrivial families of smooth minimal models, Complex Geometry, Springer, Berlin, Heidelberg, (2002), 279â€"328. https://doi.org/10.1007/978-3-642-56202-0_16 |
[20] | B. Taji, The isotriviality of smooth families of canonically polzrised manifolds over a special quasi-projective base, Comp. Math., 152 (2016), 1121â€"1134. https://doi.org/10.1112/S0010437X1600734X doi: 10.1112/S0010437X1600734X |
[21] | Y. Deng, Big Picard theorem and algebraic hyperbolicity for varieties admitting a variation of Hodge structures. arXiv preprint, (2020), arXiv: 2001.04426. |
[22] | A. Höring, T. Peternell, Algebraic integrability of foliations with numerically trivial canonical bundle, Inv. Math., 216 (2019), 395â€"419. https://doi.org/10.1007/s00222-018-00853-2 doi: 10.1007/s00222-018-00853-2 |
[23] | F. Campana, J. Cao-M. Păun, Subharmonicity of direct images and applications, arXiv preprint, (2019), arXiv: 1906.11317. |
[24] | A. Beauville, Variétés Kählériennes dont la première classe de Chern est nulle, J. Differ. Geom., 18 (1983), 755â€"782. https://doi.org/10.4310/jdg/1214438181 doi: 10.4310/jdg/1214438181 |
[25] | A. L. Besse, Einstein manifolds, Ergeb.Math.Grenzgeb., Springer Verlag, 1987. |
[26] | L. Bieberbach, Über die Bewegungsgruppen des Euklidischen Raüme, Mathematische Annalen, 70 (1911), 297â€"336. https://doi.org/10.1007/BF01456724 doi: 10.1007/BF01456724 |
[27] | W. Fulton, J. Harris, Representation theory. A first course. Springer-Verlag, 1991. |
[28] | F. Campana, The Bogomolov-Beauville-Yau decomposition for KLT Projective Varieties with trivial first Chern class-without tears, Bull. SMF., 149 (2021), 1â€"13. https://doi.org/10.24033/bsmf.2823 doi: 10.24033/bsmf.2823 |
[29] | P. Eyssidieux, V. Guej, A. Zeriahi, Singular Kähler-Einstein metrics, J. AMS., 22 (2009), 607â€"639. https://doi.org/10.1090/S0894-0347-09-00629-8 doi: 10.1090/S0894-0347-09-00629-8 |
[30] | D. Greb, H. Guenancia, S. Kebekus, Klt varieties with trivial canonical class, holonomy, differential forms, and fundamental groups, Geom. Topol., 23 (2019), 2051â€"2124. https://doi.org/10.2140/gt.2019.23.2051 doi: 10.2140/gt.2019.23.2051 |
[31] | D. Greb, S. Kebekus, T. Peternell, Etale fundamental group of Kawamata log-terminal spaces, flat sheaves and quotients of abelian varieties, Duke Math. J., 165 (2016), 1965â€"2004. https://doi.org/10.1215/00127094-3450859 doi: 10.1215/00127094-3450859 |
[32] | Y. Brunebarbe, B. Klingler, B. Totaro, Symmetric differentials and the fundamental group, Duke Math. J., 162 (3013), 2797â€"2813. https://doi.org/10.1215/00127094-2381442 doi: 10.1215/00127094-2381442 |
[33] | F. Sakai, Symmetric powers of the cotangent bundle and classification of algebraic varieties. Algebraic geometry, Springer, Berlin, Heidelberg, 1979. 545â€"563. https://doi.org/10.1007/BFb0066663 |
[34] | A. Höring, T. Peternell, A nonvanishing conjecture for cotangent bundles, arXiv preprint, (2020), arXiv: 2006.05225. |
[35] | J. Pereira, E. Rousseau, F. Touzet, Numerically nonspecial varieties. arXiv preprint, (2021), arXiv: 2106.12275. |
[36] | F. Bogomolov, Hamiltonian Kähler manifolds, Sov. Math. Dokl., 19 (1978), 1462â€"1465. |
[37] | B. Claudon, Positivité du cotangent logarithmique et conjecture de Shafarevich-Viehweg, Séminaire Bourbaki, 2015. |
[38] | S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure and Appl. Math., 31 (1978), 339â€"411. https://doi.org/10.1002/cpa.3160310304 doi: 10.1002/cpa.3160310304 |