In this paper, we present some arithmetic properties for the second order mock theta function $ B(q) $ given by McIntosh as:
$ B(q) = \sum\limits_{n = 0}^{\infty}\frac{q^n(-q;q^2)_n}{(q;q^2)_{n+1}}. $
Citation: Harman Kaur, Meenakshi Rana. On second order mock theta function $ B(q) $[J]. Electronic Research Archive, 2022, 30(1): 52-65. doi: 10.3934/era.2022003
In this paper, we present some arithmetic properties for the second order mock theta function $ B(q) $ given by McIntosh as:
$ B(q) = \sum\limits_{n = 0}^{\infty}\frac{q^n(-q;q^2)_n}{(q;q^2)_{n+1}}. $
[1] | G. E. Andrews, D. Passary, J. A. Sellers, A. J. Yee, Congruences related to the Ramanujan/Watson mock theta functions $\omega(q)$ and $\nu(q)$, Ramanujan J., 43 (2016), 347–357. https://doi.org/10.1007/s11139-016-9812-2 doi: 10.1007/s11139-016-9812-2 |
[2] | W. Zhang, J. Shi, Congruences for the coefficients of the mock theta function $\beta(q)$, Ramanujan J., 49 (2019), 257–267. https://doi.org/10.1007/s11139-018-0056-1 doi: 10.1007/s11139-018-0056-1 |
[3] | H. Burson, Combinatorics of two second order mock theta functions, Int. J. Number Theory, 17 (2021), 285–295. https://doi.org/10.1142/S1793042120400229 doi: 10.1142/S1793042120400229 |
[4] | S. Sharma, M. Rana, Combinatorial interpretations of mock theta functions by attaching weights, Discret. Math., 341 (2018), 1903–1914. https://doi.org/10.1016/j.disc.2018.03.017 doi: 10.1016/j.disc.2018.03.017 |
[5] | S. H. Chan, R. Mao, Two congruences for Appell-Lerch sums, Int. J. Number Theory, 8 (2012), 111–123. https://doi.org/10.1142/S1793042112500066 |
[6] | Y. K. Qu, Y. J. Wang, O. X. M. Yao, Generalizations of some conjectures of Chan on congruences for Appell-Lerch sums, J. Math. Anal. Appl., 460 (2018), 232–238. https://doi.org/10.1016/j.jmaa.2017.11.035 |
[7] | G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook, Part V, Springer, 2018. https://doi.org/10.1007/978-3-319-77834-1 |
[8] | R. J. McIntosh, Second order mock theta functions, Can. Math. Bull., 50 (2007), 284–290. https://doi.org/.10.4153/CMB-2007-028-9 |
[9] | B. Gordon, R. J. McIntosh, A survey of classical mock theta functions, in Partitions, $q-$Series and Modular Forms, in: Developments in Mathematics (eds. K. Alladi, F. Garvan), Springer, New York, (2012), 95–144. |
[10] | K. Bringmann, K. Ono, R. C. Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc., 21 (2008), 1085–1104. https://doi.org/10.1090/S0894-0347-07-00587-5 doi: 10.1090/S0894-0347-07-00587-5 |
[11] | R. Mao, Arithmetic properties of the mock theta function $B(q)$, Bull. Aust. Math. Soc., 102 (2020), 50–58. https://doi.org/10.1017/S0004972719001175 doi: 10.1017/S0004972719001175 |
[12] | G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976. |
[13] | J. A. Ewell, Partition recurrences, J. Comb. Theory A, 14 (1973), 125–127. https://doi.org/10.1016/0097-3165(73)90070-8 doi: 10.1016/0097-3165(73)90070-8 |
[14] | D. Nyirenda, On parity and recurrences for certain partition functions, Contrib. Discret. Math., 15 (2020), 72–79. |
[15] | K. Ono, N. Robbins, B. Wilson, Some recurrences for arithmetical functions, J. Indian Math. Soc., 62 (1996), 29–50. |
[16] | R. da Silva, P. D. Sakai, New partition function recurrences, J. Integer Seq., 23 (2020), 1–16. |
[17] | B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991. https://doi.org/10.1007/978-1-4612-0965-2 |
[18] | P. C. Toh, Ramanujan type identities and congruences for partition pairs, Discret. Math., 312 (2012), 1244–1250. https://doi.org/10.1016/j.disc.2011.10.013 doi: 10.1016/j.disc.2011.10.013 |
[19] | M. D. Hirschhorn, The Power of $q$, Springer, 2017. |
[20] | M. D. Hirschhorn, J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput., 53 (2005), 65–73. |
[21] | B. Hemantkumar, Congruence properties of coefficients of the eighth-order mock theta function $V_0(q)$, Ramanujan J., (2021) 1–25. https://doi.org/10.1007/s11139-020-00342-2 |