Research article

Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism

  • Received: 27 April 2024 Revised: 28 July 2024 Accepted: 30 July 2024 Published: 06 August 2024
  • In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism

    $ \begin{equation*} \left\{ \begin{array}{ll} v_{1t} = \nabla \cdot\big(\psi(v_{1})\nabla v_{1}-\chi \phi(v_{1})\nabla v_{2}\big)+\lambda_{1}v_{1}-\lambda_{2}v_{1}^{\beta},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{2t} = \Delta v_{2}-w^{\theta}v_{2}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v_{1}^{\alpha}, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] \end{array} \right. \end{equation*} $

    in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \chi, \; \lambda_{1}, \; \lambda_{2}, \; \theta > 0, \; 0 < \alpha\leq\frac{1}{\theta}, \; \beta\geq 2, \; $ $ \psi $, and $ \phi $ are nonlinear functions that satisfy $ \psi(s)\geq a_{0}(s+1)^{r_{1}} $ and $ 0\leq\phi(s)\leq b_{0}s(s+1)^{r_{2}} $ for all $ s\geq 0 $ with $ a_{0}, b_{0} > 0 $ and $ r_{1}, r_{2}\in \mathbb{R}. $ It has been proven that if $ r_{1} > 2r_{2}+1, $ then the problem admits a global and bounded classical solution for some appropriate nonnegative initial data.

    Citation: Zihan Zheng, Juan Wang, Liming Cai. Global boundedness in a Keller-Segel system with nonlinear indirect signal consumption mechanism[J]. Electronic Research Archive, 2024, 32(8): 4796-4808. doi: 10.3934/era.2024219

    Related Papers:

  • In this paper, we study a quasilinear chemotaxis model with a nonlinear indirect consumption mechanism

    $ \begin{equation*} \left\{ \begin{array}{ll} v_{1t} = \nabla \cdot\big(\psi(v_{1})\nabla v_{1}-\chi \phi(v_{1})\nabla v_{2}\big)+\lambda_{1}v_{1}-\lambda_{2}v_{1}^{\beta},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] v_{2t} = \Delta v_{2}-w^{\theta}v_{2}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w-w+v_{1}^{\alpha}, \ &\ \ x\in \Omega, \ t>0 ,\\[2.5mm] \end{array} \right. \end{equation*} $

    in a smooth and bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \chi, \; \lambda_{1}, \; \lambda_{2}, \; \theta > 0, \; 0 < \alpha\leq\frac{1}{\theta}, \; \beta\geq 2, \; $ $ \psi $, and $ \phi $ are nonlinear functions that satisfy $ \psi(s)\geq a_{0}(s+1)^{r_{1}} $ and $ 0\leq\phi(s)\leq b_{0}s(s+1)^{r_{2}} $ for all $ s\geq 0 $ with $ a_{0}, b_{0} > 0 $ and $ r_{1}, r_{2}\in \mathbb{R}. $ It has been proven that if $ r_{1} > 2r_{2}+1, $ then the problem admits a global and bounded classical solution for some appropriate nonnegative initial data.



    加载中


    [1] E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, 44 (2001), 441–470.
    [3] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, 40 (1997), 411–433.
    [4] D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/s0956792501004363 doi: 10.1017/s0956792501004363
    [5] T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349–367. https://doi.org/10.4310/MAA.2001.v8.n2.a9 doi: 10.4310/MAA.2001.v8.n2.a9
    [6] M. Herrero, J. Vel$\acute{a}$zquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci., 24 (1997), 633–683.
    [7] D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ., 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
    [8] M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
    [9] J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Commun. Partial Differ. Equations, 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
    [10] M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties, J. Math. Anal. Appl., 348 (2008), 708–729. https://doi.org/10.1016/j.jmaa.2008.07.071 doi: 10.1016/j.jmaa.2008.07.071
    [11] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, J. Commun. Partial Differ. Equations, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [12] T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal., 18 (2019), 255–284. https://doi.org/10.3934/cpaa.2019014 doi: 10.3934/cpaa.2019014
    [13] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, Jahresber. Dtsch. Math.-Ver., 105 (2003), 103–165.
    [14] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261–272. https://doi.org/10.1016/j.jmaa.2011.05.057 doi: 10.1016/j.jmaa.2011.05.057
    [15] K. Painter, T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501–543.
    [16] M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse, Math. Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146
    [17] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equations, 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
    [18] K. Lin, C. Mu, H. Zhong, A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl., 464 (2018), 435–455. https://doi.org/10.1016/j.jmaa.2018.04.015 doi: 10.1016/j.jmaa.2018.04.015
    [19] W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal. Real World Appl., 50 (2019), 484–497. https://doi.org/10.1016/j.nonrwa.2019.05.002 doi: 10.1016/j.nonrwa.2019.05.002
    [20] M. Ding, W. Wang, Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. - Ser. B, 24 (2019), 4665–4684. https://doi.org/10.3934/dcdsb.2018328 doi: 10.3934/dcdsb.2018328
    [21] Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061
    [22] S. Wu, Boundedness in a quasilinear chemotaxis model with logistic growth and indirect signal production, Acta Appl. Math., 176 (2021), 1–14. https://doi.org/10.1007/s10440-021-00454-x doi: 10.1007/s10440-021-00454-x
    [23] G. Ren, Global solvability in a Keller-Segel-growth system with indirect signal production, Calc. Var. Partial Differ. Equations, 61 (2022), 207. https://doi.org/10.1007/s00526-022-02313-5 doi: 10.1007/s00526-022-02313-5
    [24] D. Li, Z. Li, Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, Z. Angew. Math. Phys., 73 (2022), 1–17. https://doi.org/10.1007/s00033-021-01655-y doi: 10.1007/s00033-021-01655-y
    [25] X. Cao, Y. Tao, Boundedness and stabilization enforced by mild saturation of taxis in a producer-scrounger model, Nonlinear Anal. Real World Appl., 57 (2021), 103189. https://doi.org/10.1016/j.nonrwa.2020.103189 doi: 10.1016/j.nonrwa.2020.103189
    [26] C. Wang, Z. Zheng, The effects of cross-diffusion and logistic source on the boundedness of solutions to a pursuit-evasion model, Electron. Res. Arch., 31 (2023), 3362–3380. https://doi.org/10.3934/era.2023170 doi: 10.3934/era.2023170
    [27] Y. Tao, M. Winkler, Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Soc., 19 (2017), 3641–3678. https://doi.org/10.4171/JEMS/749 doi: 10.4171/JEMS/749
    [28] X. Li, Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function, Z. Angew. Math. Phys., 71 (2020), 1–22. https://doi.org/10.1007/s00033-020-01339-z doi: 10.1007/s00033-020-01339-z
    [29] Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521–529. https://doi.org/10.1016/j.jmaa.2011.02.041 doi: 10.1016/j.jmaa.2011.02.041
    [30] Q. Zhang, Y. Li, Stabilization and convergence rate in a chemotaxis system with consumption of chemoattractant, J. Math. Phys., 56 (2015), 081506. https://doi.org/10.1063/1.4929658 doi: 10.1063/1.4929658
    [31] Y. Tao, M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equations, 252 (2012), 2520–2543. https://doi.org/10.1016/j.jde.2011.07.010 doi: 10.1016/j.jde.2011.07.010
    [32] M. Fuest, Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equations, 267 (2019), 4778–4806. https://doi.org/10.1016/j.jde.2019.05.015 doi: 10.1016/j.jde.2019.05.015
    [33] Y. Liu, Z. Li, J. Huang, Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption, J. Differ. Equations, 269 (2020), 6365–6399. https://doi.org/10.1016/j.jde.2020.05.008 doi: 10.1016/j.jde.2020.05.008
    [34] Y. Xiang, P. Zheng, On a two-species chemotaxis-competition system with indirect signal consumption, Z. Angew. Math. Phys., 73 (2022), 50. https://doi.org/10.1007/s00033-022-01680-5 doi: 10.1007/s00033-022-01680-5
    [35] C. Wang, Z. Zheng, Global boundedness for a chemotaxis system involving nonlinear indirect consumption mechanism, Discrete Contin. Dyn. Syst. - Ser. B, 29 (2024), 2141–2157. https://doi.org/10.3934/dcdsb.2023171 doi: 10.3934/dcdsb.2023171
    [36] C. Wang, Z. Zheng, X. Zhu, Dynamic behavior analysis to a generalized chemotaxis-consumption system, J. Math. Phys., 65 (2024), 011503. https://doi.org/10.1063/5.0176530 doi: 10.1063/5.0176530
    [37] J. Xing, P. Zheng, Boundedness and long-time behavior for a two-dimensional quasilinear chemotaxis system with indirect signal consumption, Results Math., 77 (2022), 1–19. https://doi.org/10.1007/s00025-021-01569-1 doi: 10.1007/s00025-021-01569-1
    [38] W. Zhang, S. Liu, Large time behavior in a quasilinear chemotaxis model with indirect signal absorption, Nonlinear Anal., 222 (2022), 112963. https://doi.org/10.1016/j.na.2022.112963 doi: 10.1016/j.na.2022.112963
    [39] Y. Chiyo, S. Frassu, G. Viglialoro, A nonlinear attraction-repulsion Keller-Segel model with double sublinear absorptions: Criteria toward boundedness, preprint, arXiv: 2208.05678.
    [40] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215 (2005), 52–107. https://doi.org/10.1016/J.JDE.2004.10.022 doi: 10.1016/J.JDE.2004.10.022
    [41] M. Marras, G. Viglialoro, Boundedness in a fully parabolic chemotaxis-consumption system with nonlinear diffusion and sensitivity, and logistic source, Math. Nachr., 291 (2018), 2318–2333. https://doi.org/10.1002/mana.201700172 doi: 10.1002/mana.201700172
    [42] J. Wang, Global existence and boundedness of a forager-exploiter system with nonlinear diffusions, J. Differ. Equations, 276 (2021), 460–492. https://doi.org/10.1016/j.jde.2020.12.028 doi: 10.1016/j.jde.2020.12.028
    [43] J. Lankeit, Y. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, preprint, arXiv: 1608.07991.
    [44] J. Wang, M. Wang, Global bounded solution of the higher-dimensional forager-exploiter model with/without growth sources, Math. Models Methods Appl. Sci., 30 (2020), 1297–1323. https://doi.org/10.1142/S0218202520500232 doi: 10.1142/S0218202520500232
    [45] C. Stinner, C. Surulescu, M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969–2007. https://doi.org/10.1137/13094058X doi: 10.1137/13094058X
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(682) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog