This research explores the spillover effects in the directional movement of returns and the persistence of shocks among three prominent energy spot markets: title transfer facility for natural gas, Brent crude oil and electricity markets from monthly price data spanning January 2010 to September 2022. Methodologically, we initially employ bivariate vector autoregressive models to detect potential lagged return effects from one spot market on another. Then, we examine the impact on the conditional mean returns and volatility across these spot markets using the standard dynamic conditional correlation (DCC) model, as well as the respective asymmetric (ADCC) and flexible (FDCC) extensions. In addition, we accommodate innovative insights that include recent datasets on the COVID-19 crisis and the Ukrainian war, which constitute a new addition to the existent literature. The empirical findings confirm the significant impact of these two unprecedented moments of contemporaneous history, given that both events are substantiated by an exponential increase in prices and by a rise in volatility. However, the effect on returns was not uniform across the time series. Specifically, there was a consistent increase in volatility for natural gas and electricity from the start of 2020 until the end of 2022, while Brent oil exhibited a substantial peak only in the first half of 2020. This study also reveals that previous lagged returns within each market, particularly for Brent oil and electricity, had statistically significant effects on current returns. There was also a robust unidirectional positive spillover effect from the Brent oil market to the returns of electricity and the natural gas markets. The study also reveals the presence of a weak positive autocorrelation between natural gas and electricity returns, and positive shocks to returns had a more pronounced impact on volatility compared to negative shocks across all the time series.
Citation: Gustavo Soutinho, Vítor Miguel Ribeiro, Isabel Soares. Dynamic correlation among title transfer facility natural gas, Brent oil and electricity EPEX spot markets: Spillover effects of economic shocks on returns and volatility[J]. AIMS Energy, 2023, 11(6): 1252-1277. doi: 10.3934/energy.2023057
[1] | Carlo Bianca . Differential equations frameworks and models for the physics of biological systems. AIMS Biophysics, 2024, 11(2): 234-238. doi: 10.3934/biophy.2024013 |
[2] | Carlo Bianca . Interplay and multiscale modeling of complex biological systems. AIMS Biophysics, 2022, 9(1): 56-60. doi: 10.3934/biophy.2022005 |
[3] | Carlo Bianca . Theoretical frameworks and models for biological systems. AIMS Biophysics, 2020, 7(3): 167-168. doi: 10.3934/biophy.2020013 |
[4] | Carlo Bianca . Mathematical and computational modeling of biological systems: advances and perspectives. AIMS Biophysics, 2021, 8(4): 318-321. doi: 10.3934/biophy.2021025 |
[5] | Bradley Vis, Jonathan J. Powell, Rachel E. Hewitt . Imaging flow cytometry methods for quantitative analysis of label-free crystalline silica particle interactions with immune cells. AIMS Biophysics, 2020, 7(3): 144-166. doi: 10.3934/biophy.2020012 |
[6] | Mario P. Carante, Francesca Ballarini . Modelling cell death for cancer hadrontherapy. AIMS Biophysics, 2017, 4(3): 465-490. doi: 10.3934/biophy.2017.3.465 |
[7] | Mehmet Yavuz, Fuat Usta . Importance of modelling and simulation in biophysical applications. AIMS Biophysics, 2023, 10(3): 258-262. doi: 10.3934/biophy.2023017 |
[8] | Domenico Lombardo, Pietro Calandra, Maria Teresa Caccamo, Salvatore Magazù, Luigi Pasqua, Mikhail A. Kiselev . Interdisciplinary approaches to the study of biological membranes. AIMS Biophysics, 2020, 7(4): 267-290. doi: 10.3934/biophy.2020020 |
[9] | Nor Afiqah Mohd Aris, Siti Suhana Jamaian . Dynamical analysis of fractional-order chemostat model. AIMS Biophysics, 2021, 8(2): 182-197. doi: 10.3934/biophy.2021014 |
[10] | Raghvendra P Singh, Guillaume Brysbaert, Marc F Lensink, Fabrizio Cleri, Ralf Blossey . Kinetic proofreading of chromatin remodeling: from gene activation to gene repression and back. AIMS Biophysics, 2015, 2(4): 398-411. doi: 10.3934/biophy.2015.4.398 |
This research explores the spillover effects in the directional movement of returns and the persistence of shocks among three prominent energy spot markets: title transfer facility for natural gas, Brent crude oil and electricity markets from monthly price data spanning January 2010 to September 2022. Methodologically, we initially employ bivariate vector autoregressive models to detect potential lagged return effects from one spot market on another. Then, we examine the impact on the conditional mean returns and volatility across these spot markets using the standard dynamic conditional correlation (DCC) model, as well as the respective asymmetric (ADCC) and flexible (FDCC) extensions. In addition, we accommodate innovative insights that include recent datasets on the COVID-19 crisis and the Ukrainian war, which constitute a new addition to the existent literature. The empirical findings confirm the significant impact of these two unprecedented moments of contemporaneous history, given that both events are substantiated by an exponential increase in prices and by a rise in volatility. However, the effect on returns was not uniform across the time series. Specifically, there was a consistent increase in volatility for natural gas and electricity from the start of 2020 until the end of 2022, while Brent oil exhibited a substantial peak only in the first half of 2020. This study also reveals that previous lagged returns within each market, particularly for Brent oil and electricity, had statistically significant effects on current returns. There was also a robust unidirectional positive spillover effect from the Brent oil market to the returns of electricity and the natural gas markets. The study also reveals the presence of a weak positive autocorrelation between natural gas and electricity returns, and positive shocks to returns had a more pronounced impact on volatility compared to negative shocks across all the time series.
In the last decades the interest towards the complex systems for the modeling and studying of biological systems has been ever growing (see among the others [1]–[11], and references therein).
More generally, the study of complex systems [12]–[15] is one of the main resaerch topics of the last years. However the description of such systems, with related quantities and parameters, depends on the particular approach that is chosen. Different mathematical frameworks have been proposed depending on the representation scale of the system. In the present paper, we turn our attention on the so-called “kinetic approach” which is a generalization of the model proposed by Boltzmann [16] to describe the statistical dynamics of gases, and is based on a suitable version of his equation. The interacting entities of the system are called active particles. The evolution of the system is described by a distribution function which depends on the time, on the mechanical variables (i.e. space and velocity) and on a scalar variable called “activity”, whose meaning depends on the current application [17]. In the kinetic theoretical description of a complex system, the evolution depends on an integral term that defines the interactions between the particles.
A new modeling framework has been recently proposed for the description of a complex system under the action of an external force field: the thermostatted kinetic theory [18], [19]. The action of an external force field moves the systems out of the equilibrium. In this framework, the complex system under investigation is divided into n functional subsystems such that particles belonging to the same functional subsystem share the same strategy (in a suitable sense, the same aim) [20]. The macroscopic state is described by specific pth-order moments (see Section 2). The introduction of a dissipative term, called thermostat, constrains the system to keep the 2nd-order moment of the system, which can be regarded as the physical global activation energy, costant in time. The evolution of the system is then described by a system of nonlinear integro-differential equations with quadratic nonlinearity. The thermostatted kinetic theory has been developed, for instance, in the study of Kac equation too [21].
A biological system is constituted by a large number of interacting entities (the active particles) whose microscopic state can be described by a real variable (activity) which represents the individual ability to express a specific strategy. The active particles of a biological systems have the ability to develop behaviour that cannot only be explained by the classical mechanics laws, and, in some cases, can generate proliferative and/or destructive processes. By using the functional subsystems, the complexity can be reduced by decomposing the biological systems into several interacting subsystems [22]. In fact, this approach can possibly be considered the first fundamental contribution to biological studies [23]. The decomposition method can be regarded as a tool to reduce complexity. In fact, the active particles in each module, which is described as a functional subsystem, are not of the same type, while they express the same strategy collectively. Thus the system can be studied regarding the evolution of each functional subsystem rather than the single active particle.
A biological system can be described at different representation scales, depending on the particular application. For instance, the microscopic scale in biology corresponds to cells, while the dynamics of cells depends on the dynamics at the lower molecular scale, namely the scale of molecules. In some cases, the complexity of the system induces the use of even a larger scale, the macroscopic scale, which corresponds to population dynamics [24]–[26]. By using the framework of kinetic theory, the microscopic scale models the interactive dynamics among active particles, and it is described by using the activity variable, while the macroscopic state of the whole system is described by the pth-order moments related to the distribution function. The description of the biological systems depends on the pairwise interactions among the active particles (microscopic scale) and the state of the overall system (macroscopic scale).
In the last years, a widely interesting biological application is the modeling of the dynamics of epidemics with virus variations (see [3]–[6], [27]–[30], and references therein). One of the most used model is SIR (Susceptible, Infectious, Recovered), with its variants (see [6], [31]–[36], and references therein). In this contest, the system may be decomposed into 3 functional subsystem of interacting individual. The first functional subsystems denotes the healthy individuals whose microscopic state models the susceptibility to contract the pathological state. The second functional subsystems represents denotes individuals healthy carriers of the virus, whose microscopic state models the infectivity of the virus. The thirs functional subsystem denotes the individuals affected by the virus at the first and subsequent stages, whose microscopic state models the progression of both the infectivity and the pathological state.
Beyond biological systems, the thermostatted framework is used to study, among other topics: socio-economic systems [37], [38], pedestrian dynamics [39], vehicular traffic [40], crowd dynamics [41], human feelings [42], [43] and opinion formation [44].
The present paper deals with the discrete thermostatted framework: the activity variable attains its value in a discrete subset of ℝ, so that in this case the evolution of the system is modeled by a system of nonlinear ordinary differential equations with quadratic nonlinearity. The existence and uniqueness of the solutions is assured for both the related Cauchy and nonequilibrium stationary problems [45], [46]. The analysis of the discrete framework is important in order to define the methods for the numerical simulations.
The use of a discrete variable is not only a technical choice. In some application, this is related to the description of the current biological systems [47], [48]. For instance in order to describe the state of a cell, three values are assigned to the activity variable: normal, infected, dead. Moreover, in socio-economic systems [37], [38], the discretization of the activity variable has conceptual reason. As a matter of fact, a continuous activity variable for the socio-economic quantities may not make any sense: e.g. the wealth-state.
The main aim of this paper is the study of stability in the Hadamard sense of the discrete themostatted kinetic framework. A model is stable in the Hadamard sense if the solution exists and is unique, and it depends continuously on the initial data. In the current paper, two Cauchy problems, related to the discrete thermostatted framework that differ for their initial data, are considered. The distance between the initial data is estimated by a δ > 0. Using typical analytical techniques, this paper shows that the distance between the corresponding solutions, in a suitable norm, is estimated continuously in function of δ (see [49] for the continuous case), i.e. if δ goes to 0, the two solutions collapse.
The importance of continuous dependence of the solutions on the initial data is related, among other things, to the numerical simulations that can be performed [7], [50]–[52]. As a matter of fact, since the initial data is in general derived from a statistical analysis, its value is affected by an error, then the stability of the model may assure a “slow and small propagation” of such an error during the evolution, at least for small time intervals. Among others, the application of the discrete thermostatted framework to the epidemic dynamics may be considered. In this case the initial data is obtained from a statistical study, then it may be affected by an error. The continuous dependence with respect to the initial data is an important issue such that the numerical simulations can be performed such that the solution represents the evolution of epidemic with sufficient accuracy.
This paper presents a first step towards the study of stability and dependence on the initial data for the discrete kinetic thermostatted framework.
The contents of this paper are divided into 5 more sections which follow this brief Introduction. In Section 2 the discrete thermostatted kinetic framework is presented, and the related state of art about existence and uniqueness of the solutions. In Section 3 the main Theorem about the dependence on the initial data is presented, after introducing suitable norms. Section 4 deals with the proof of Theorem, proving the stability and giving an explicit form to the constant in the final inequality which is obtained by performing some typical analytic arguments. Finally Section 5 deals with the future research perspective that may follow this paper, which is meant as a first step towards the dependence on the initial data for the discrete thermostatted kinetic framework.
Let us consider a complex system 𝒞 homogeneous with respect to the mechanical variables, i.e. space and velocity, which is divided into n (where n ∈ ℕ is fixed) functional subsystems such that particles belonging to the same functional subsystem share the same strategy
The related vector distribution function of the system 𝒞 reads:
The macroscopic state of the system, at a time t > 0, is described by the pth-order moment, which is defined, for p ∈ ℕ, as:
The interaction among the active particles is described by the following parameters:
Let Fi(t) : [0; +∞[→ ℝ+, for i ∈ {1,2, …, n}, be an external force acting on the ith functional subsystem, such that the external force field writes:
A discrete thermostat is included in order to keep constant the 2nd-order moment 𝔼2[f](t). Let 𝔼2 be the fixed value of the 2nd-order moment, then the evolution of the ith functional subsystem, for i ∈ {1,2, …, n}, is:
Let
Definition 2.1. Fixed 𝔼2 > 0, the space function
Henceforth, the following assumptions are taken into account:
H1
H2
H3 there exists η > 0 such that ηhk = η, for all h, k ∈ {1,2, …, n};
H4 there exists F > 0 such that Fi(t) = F, for all i ∈ {1,2, …, n} and for all t > 0.
Remark 2.2. The H1 is a technical assumption since the generalized framework has been treated in [53], where ui ≥ 1 is not required.
In this framework, under the assumptions H1-H4, there exists one only function
Complex systems usually operate far from equilibrium since their evolution is related to an internal dynamics, due to the interaction between particles, and to an external dyanmics, due to the external force field. Then nonequilibrium stationary states are reached during the evolution.
The stationary problem related to (2.2) is, for i ∈ {1,2, …, n}:
In [46] the existence of a solution of (2.4), called non-equilibrium stationary solution, is gained, and the uniqueness is proved under some restrictions on the value of the external force F. Henceforth, without leading of generality, 𝔼2[f] = 𝔼0[f] = 1 is assumed.
If these further assumptions hold true:
H5
H6
then the evolution equation of 𝔼1[f](t) reads
Remark 2.3. The assumptions H3-H4 are not restricted. Indeed the results of existence and, if possible, uniqueness can be proved if there exist F,η > 0 such that:
Under suitable assumptions the Cauchy problem (2.3) has a unique solution
Let us consider now two Cauchy problems related to the discrete thermostatted framework (2.2):
If the assumptions H1-H6 hold true, there exist
Theorem 3.1. Consider the Cauchy problems (3.1). Suppose that the assumptions H1-H6 hold true. If there exists δ > 0 such that:
Remark 3.2. As consequence of Theorem 3.1, the problem (2.3) is well-posed in the Hadamard sense.
Proof of Theorem 3.1. The thermostatted
Integrating between 0 and t, the
By assumptions:
Finally, by
Using the
Subtracting the
By
Moreover, for i ∈ {1, 2, …, n}:
Summing the
Then by
Since, by straightforward calculations:
Using the
Let introduce the constant
Applying the Gronwall Lemma
Finally, by
The mathematical analysis performed in this paper has been addressed to the dependence on the initial data of the discrete thermostatted kinetic framework. Theorem 3.1 ensures the stability in the Hadarmd sense of the framework (2.2), for all T > 0. The constant C > 0, obtained after some technical computations, is explicit and is an important issue for future numerical simulations that may be performed for several applications (see among others [55], [56] and references therein).
Numerical simulations towards the framework (2.2) are a first future research prespective. Specifically, the parameters of the system, i.e. interaction rates ηhk and transition probability densities
For Theorem 3.1 the norm
Theorem 3.1 provides stability for the discrete framework when the 2nd-order moment is preserved. The general framework [45], when the generic pth-order moment is preserved, is not investigated in this paper. An interesting future research perspective is the analysis of the general case by using, in a first approach, the same norm of Theorem 3.1.
[1] | Grubb M (2022) Renewables are cheaper than ever-so why are household energy bills only going up? The Conversation. Available from: https://theconversation.com/renewables-are-cheaper-than-ever-so-why-are-household-energy-bills-only-going-up-174795. |
[2] |
Mensi W, Rehman MU, Maitra D, et al. (2021) Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain. Resour Policy 72: 102062. https://doi.org/10.1016/j.resourpol.2021.102062 doi: 10.1016/j.resourpol.2021.102062
![]() |
[3] |
Qin Y, Hong K, Chen J, et al. (2020) Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions. Energy Econ 90: 104851. https://doi.org/10.1016/j.eneco.2020.104851 doi: 10.1016/j.eneco.2020.104851
![]() |
[4] |
Lee Y, Yoon SM (2020) Dynamic spillover and hedging among carbon, biofuel and oil. Energies 13: 4382. https://doi.org/10.3390/en13174382 doi: 10.3390/en13174382
![]() |
[5] |
Benlagha N, Karim S, Naeem MA, et al. (2022) Risk connectedness between energy and stock markets: Evidence from oil importing and exporting countries. Energy Econ 115: 106348. https://doi.org/10.1016/j.eneco.2022.106348 doi: 10.1016/j.eneco.2022.106348
![]() |
[6] |
Gong X, Liu Y, Wang X (2021) Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method. Int Rev Financ Anal 76: 101790. https://doi.org/10.1016/j.irfa.2021.101790 doi: 10.1016/j.irfa.2021.101790
![]() |
[7] |
Lovcha Y, Perez-Laborda A (2020) Dynamic frequency connectedness between oil and natural gas volatilities. Econ Model 84: 181–189. https://doi.org/10.1016/j.econmod.2019.04.008 doi: 10.1016/j.econmod.2019.04.008
![]() |
[8] |
Hamilton JD (1983) Oil and the macroeconomy since World War Ⅱ. J Polit Econ 91: 228–248. https://doi.org/10.1086/261140 doi: 10.1086/261140
![]() |
[9] |
Narayan P, Narayan S, Sharma S (2013) An analysis of commodity markets: What gain for investors? J Bank Financ 37: 3878–3889. https://doi.org/10.1016/j.jbankfin.2013.07.009 doi: 10.1016/j.jbankfin.2013.07.009
![]() |
[10] |
Narayan P, Amhed H, Narayan S (2015) Do momentum-based trading strategies work in the commodity futures markets? J Futures Mark 35: 868–891 https://doi.org/10.1002/fut.21685 doi: 10.1002/fut.21685
![]() |
[11] |
Zhao LT, Yan JL, Wang Y (2017) Empirical study of the functional changes in price discovery in the Brent crude oil market. Energy Procedia 142: 2917–2922. https://doi.org/10.1016/j.egypro.2017.12.417 doi: 10.1016/j.egypro.2017.12.417
![]() |
[12] |
Zhang W, He X, Nakajima T, et al. (2020) How does the spillover among natural gas, crude oil, and electricity utility stocks change over Time? Evidence from North America and Europe. Energies 13: 727. https://doi.org/10.3390/en13030727 doi: 10.3390/en13030727
![]() |
[13] | Adolfsen JF, Kuik F, Lis EM, et al. (2022) The impact of the war in Ukraine on euro area energy markets. ECB. Available from: https://www.ecb.europa.eu/pub/economic-bulletin/focus/2022/html/ecb.ebbox202204_01~68ef3c3dc6.en.html. |
[14] | IEA (2023). Available from: https://www.iea.org/fuels-and-technologies/gas. |
[15] |
Erias AE, Iglesias EM (2022) Price and income elasticity of NG demand in Europe and the effects of lockdowns due to Covid-19. Energy Strategy Rev 44: 100945. https://doi.org/10.1016/j.esr.2022.100945 doi: 10.1016/j.esr.2022.100945
![]() |
[16] |
Hamilton JD (2003) What is an oil shock? J Econom 113: 363–398. https://doi.org/10.1016/S0304-4076(02)00207-5 doi: 10.1016/S0304-4076(02)00207-5
![]() |
[17] |
Emery GW, Liu WQ (2002) An analysis of the relationship between electricity and natural-gas futures prices. J Futures Mark 22: 95–122. https://doi.org/10.1002/fut.2209 doi: 10.1002/fut.2209
![]() |
[18] |
Woo C, Olson A, Horowitz I, et al. (2006) Bi-directional causality in California's electricity and natural-gas markets. Energy Policy 34: 2060–2070. https://doi.org/10.1016/j.enpol.2005.02.016 doi: 10.1016/j.enpol.2005.02.016
![]() |
[19] |
Serletis A, Shahmoradi A (2006) Measuring and testing natural gas and electricity markets volatility: Evidence from Alberta's deregulated markets. Stud Nonlinear Dyn Econ 10: 1341. https://doi.org/10.2202/1558-3708.1341 doi: 10.2202/1558-3708.1341
![]() |
[20] |
Arouri MEH, Jouini J, Nguyen DK (2011) Volatility spillovers between oil prices and stock sector returns: Implications for portfolio management. J Int Money Finance 30: 1387–1405. https://doi.org/10.1016/j.jimonfin.2011.07.008 doi: 10.1016/j.jimonfin.2011.07.008
![]() |
[21] |
Arouri MEH, Lahiani A, Nguyen DK (2011) Return and volatility transmission between world oil prices and stock markets of the GCC countries. Econ Model 28: 1815–1825. https://doi.org/10.1016/j.econmod.2011.03.012 doi: 10.1016/j.econmod.2011.03.012
![]() |
[22] |
Ewing BT, Malik F, Ozfidan O (2002) Volatility transmission in the oil and natural gas markets. Energy Econ 24: 525–538. https://doi.org/10.1016/S0140-9883(02)00060-9 doi: 10.1016/S0140-9883(02)00060-9
![]() |
[23] |
Oberndorfer U (2009) Energy prices, volatility, and the stock market: Evidence from the Eurozone. Energy Policy 37: 5787–5795. https://doi.org/10.1016/j.enpol.2009.08.043 doi: 10.1016/j.enpol.2009.08.043
![]() |
[24] |
Oberndorfer U (2009) EU emission allowances and the stock market: Evidence from the electricity industry. Ecol Econ 68: 1116–1129. https://doi.org/10.1016/j.ecolecon.2008.07.026 doi: 10.1016/j.ecolecon.2008.07.026
![]() |
[25] |
Luo C, Wu D (2016) Environment and economic risk: An analysis of carbon emission market and portfolio management. Environ Res 149: 297–301. https://doi.org/10.1016/j.envres.2016.02.007 doi: 10.1016/j.envres.2016.02.007
![]() |
[26] |
Shehzad K, Xiaoxing L, Kazouz H (2020) COVID-19's disasters are perilous than global financial crisis: a rumor or fact? Finance Res Lett 36: 101669. https://doi.org/10.1016/j.frl.2020.101669 doi: 10.1016/j.frl.2020.101669
![]() |
[27] |
Conlon T, McGee R (2020) Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Res Lett 35: 101607. https://doi.org/10.1016/j.frl.2020.101607 doi: 10.1016/j.frl.2020.101607
![]() |
[28] |
Conlon T, Corbet S, McGee RJ (2020) Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Res Int Bus Finance 54: 101248. https://doi.org/10.1016/j.ribaf.2020.101248 doi: 10.1016/j.ribaf.2020.101248
![]() |
[29] |
Goodell JW (2020) Covid-19 and finance: Agendas for future research. Finance Res Lett 35: 101512. https://doi.org/10.1016/j.frl.2020.101512 doi: 10.1016/j.frl.2020.101512
![]() |
[30] |
Goutte S, Péran T, Porcher T (2020) The role of economic structural factors in determining pandemic mortality rates: Evidence from the COVID-19 outbreak in france. Res Int Bus Finance 54:101281. https://doi.org/10.1016/j.ribaf.2020.101281 doi: 10.1016/j.ribaf.2020.101281
![]() |
[31] |
Chaaya C, Thambi VD, Sabuncu Ö, et al. (2022) Ukraine–Russia crisis and its impacts on the mental health of Ukrainian young people during the COVID-19 pandemic. Ann Med Surg 79: 104033. https://doi.org/10.1016/j.amsu.2022.104033 doi: 10.1016/j.amsu.2022.104033
![]() |
[32] |
Roy A, Soni A, Deg S (2023) A wavelet-based methodology to compare the impact of pandemic versus Russia–Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets. Energy Econ 124: 106830. https://doi.org/10.1016/j.eneco.2023.106830 doi: 10.1016/j.eneco.2023.106830
![]() |
[33] | European Commission (2022) Quarterly report on European gas markets. Market Observatory for Energy DG Energy. Available from: https://energy.ec.europa.eu/system/files/2023-05/Quarterly%20Report%20on%20European%20Gas%20Markets%20report%20Q4%202022.pdf. |
[34] |
Inshakov OV, Bogachkova LY, Popkova EG (2019) The transformation of the global energy markets and the problem of ensuring the sustainability of their development. Lect Notes Netw Syst 44: 135–148. https://doi.org/10.1007/978-3-319-90966-0_10 doi: 10.1007/978-3-319-90966-0_10
![]() |
[35] |
Liu Y, Yu L, Yang C, et al. (2021) Heterogeneity of the impact of geopolitical events on energy trade: an empirical study based on regression discontinuity design. Front Environ Sci 9: 322. https://doi.org/10.3389/fenvs.2021.722910 doi: 10.3389/fenvs.2021.722910
![]() |
[36] |
Gong X, Sun Y, Du Z (2022) Geopolitical risk and China's oil security. Energy Policy 163: 112856. https://doi.org/10.1016/j.enpol.2022.112856 doi: 10.1016/j.enpol.2022.112856
![]() |
[37] |
Zhang Z, He M, Zhang Y, et al. (2022) Geopolitical risk trends and crude oil price predictability. Energy 258: 124824. https://doi.org/10.1016/j.energy.2022.124824 doi: 10.1016/j.energy.2022.124824
![]() |
[38] |
Dutta A, Dutta P (2022) Geopolitical risk and renewable energy asset prices: Implications for sustainable development. Renew Energy 196: 518–525. https://doi.org/10.1016/j.renene.2022.07.029 doi: 10.1016/j.renene.2022.07.029
![]() |
[39] |
Su CW, Khan K, Umar M, et al. (2021) Does renewable energy redefine geopolitical risks? Energy Policy 158. https://doi.org/10.1016/j.enpol.2021.112566 doi: 10.1016/j.enpol.2021.112566
![]() |
[40] |
Ali F, Suri P, Kaur T, et al. (2022) Modelling time-varying volatility using GARCH models: Evidence from the Indian stock market. F1000Res 27: 1098. https://doi.org/10.12688/f1000research.124998.2 doi: 10.12688/f1000research.124998.2
![]() |
[41] |
Nandy S, Chattopadhyay AK (2019) Indian stock market volatility: A study of inter-linkages and spillover effects. J Emerg Mark Finance 18: 183–212. https://doi.org/10.1177/0972652719846321 doi: 10.1177/0972652719846321
![]() |
[42] |
Jebabli I, Kouaissah N, Arouri M (2022) Volatility spillovers between stock and energy markets during crises: A comparative assessment between the 2008 global financial crisis and the COVID-19 pandemic crisis. Finance Res Lett 46: 102363. https://doi.org/10.1016/j.frl.2021.102363 doi: 10.1016/j.frl.2021.102363
![]() |
[43] |
Gharib C, Mefteh-Wali S, Jabeur SB (2021) The bubble contagion effect of COVID-19 outbreak: Evidence from crude oil and gold markets. Finance Res Lett 38: 101703. https://doi.org/10.1016/j.frl.2020.101703 doi: 10.1016/j.frl.2020.101703
![]() |
[44] |
Mensi W, Sensoy A, Vo XV, et al. (2020) Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices. Resour Policy 69: 101829. https://doi.org/10.1016/j.resourpol.2020.101829 doi: 10.1016/j.resourpol.2020.101829
![]() |
[45] |
Wen F, Tong X, Ren X (2022) Gold or bitcoin, which is the safe haven during the COVID-19 pandemic? Int Rev Financ Anal 81: 102121. https://doi.org/10.1016/j.irfa.2022.102121 doi: 10.1016/j.irfa.2022.102121
![]() |
[46] |
Elsayed AH, Gozgor G, Lau CKM (2022) Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties. Int Rev Financ Anal 81: 102069. https://doi.org/10.1016/j.irfa.2022.102069 doi: 10.1016/j.irfa.2022.102069
![]() |
[47] |
Dritsaki C (2017) An empirical evaluation in GARCH volatility modeling: Evidence from the Stockholm stock exchange. J math financ 7: 366–390. https://doi.org/10.4236/jmf.2017.72020 doi: 10.4236/jmf.2017.72020
![]() |
[48] |
Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50: 987–1007. https://doi.org/10.2307/1912773 doi: 10.2307/1912773
![]() |
[49] |
Bollerslev T (1986) Generalized autoregressive conditional heteroskedasticity. J Econom 31: 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
![]() |
[50] |
Sarwar S, Shahbaz M, Anwar A (2019) The importance of oil assets for portfolio optimization: the analysis of firm level stocks. Energy Econ 78: 217–234. https://doi.org/10.1016/j.eneco.2018.11.021 doi: 10.1016/j.eneco.2018.11.021
![]() |
[51] |
Afzal F, Haiying P, Afzal F, et al. (2021) Value-at-risk analysis for measuring stochastic volatility of stock returns: using GARCH-based dynamic donditional correlation Model. SAGE Open 11. https://doi.org/10.1177/21582440211005758 doi: 10.1177/21582440211005758
![]() |
[52] | Black F (1976) Studies in stock price volatility changes of the nominal excess return on stocks. Proceedings of the business and economics statistics section, American statistical association 81: 177–181. |
[53] | Ari Y (2020) Volatility transmission model using DCC-GARCH representation. In: Samet Evci, Anshuman Sharma. Studies at the Crossroads of Management & Economics, London: IJOPEC, 237–250. |
[54] | Engle RF (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J Bus Econ Stat 20: 339–350. https://www.jstor.org/stable/1392121 |
[55] |
Bollerslev T (1990) Modelling the coherence in short-run nominal exchange rates: A multivariate generalized ARCH model. Rev Econ Stat 72: 498–505. https://doi.org/10.2307/2109358 doi: 10.2307/2109358
![]() |
[56] |
Cappiello L, Engle RF, Sheppard K (2006) Asymmetric dynamics in the correlations of global equity and bond returns. J Financ Econ 4: 537–572. https://doi.org/10.1093/jjfinec/nbl005 doi: 10.1093/jjfinec/nbl005
![]() |
[57] |
Billio M, Caporin M, Gobbo M (2006) Flexible dynamic conditional correlation multivariate GARCH models for asset allocation. Appl Financ Econ Lett 2: 123–130. https://doi.org/10.1080/17446540500428843 doi: 10.1080/17446540500428843
![]() |
[58] |
Celik S (2012) The more contagion effect on emerging markets: the evidence of DCC-GARCH model. Econ Modell 29: 1946–1959. https://doi.org/10.1016/j.econmod.2012.06.011 doi: 10.1016/j.econmod.2012.06.011
![]() |
[59] | Duca JV (2023) Subprime mortgage crisis. Federal Reserve History. Available from: https://www.federalreservehistory.org/essays/subprime-mortgage-crisis. |
[60] | Nasdaq Data Link (2023). Available from: https://data.nasdaq.com/data/ODA/PNGASEU_USD-natural-gas-netherlands-ttf-natural-gas-forward-day-ahead-us-per-million-metric-british-thermal-unit. |
[61] | US Energy Information Administration (EIA), 2023. Available from: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n = PET & s = RBRTE & f = M. |
[62] | Energy-Charts (2023). Available from: https://www.energy-charts.info/index.html?l = en & c = DE. |
[63] | EEX (2023). Available from: https://www.powernext.com/spot-market-data. |
[64] | Manescu C, Van Robays I (2014) Forecasting the brent oil price addressing time-variation in forecast performance. European Central Bank. Available from: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1735.pdf. |
[65] |
Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6: 255–259. https://doi.org/10.1016/0165-1765(80)90024-5 doi: 10.1016/0165-1765(80)90024-5
![]() |
[66] |
Ljung G, Box G (1978) On a Measure of a lack of fit in time series models. Biometrika 65: 297–303. https://doi.org/10.1093/biomet/65.2.297 doi: 10.1093/biomet/65.2.297
![]() |
[67] | PennState-Eberly College of Science (2023) STAT 509, Design and Analysis of Clinical Trials. Available from: https://online.stat.psu.edu/stat509/lesson/18/18.1. |
[68] | Greene WH (2017) Econometric Analysis. Pearson. |
[69] |
Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J AM STAT ASSOC 74: 427–431. https://doi.org/10.2307/2286348 doi: 10.2307/2286348
![]() |
[70] |
Cragg JG (1983) More efficient estimation in the presence of heteroskedasticity of unknown form. Econometrica 51: 751–764. https://doi.org/10.2307/1912156 doi: 10.2307/1912156
![]() |
[71] | Brooks, C (2014) Introductory econometrics for finance, Cambridge: Cambridge University Press. |
[72] |
Dutta A, Bouri E, Noor MH (2018) Return and volatility linkages between CO2 emission and clean energy stock prices. Energy 164: 803–810. https://doi.org/10.1016/j.energy.2018.09.055 doi: 10.1016/j.energy.2018.09.055
![]() |
[73] |
Ahmad W (2017) On the dynamic dependence and investment performance of crude oil and clean energy stocks. Res Int Bus Finance 42: 376–389. https://doi.org/10.1016/j.ribaf.2017.07.140 doi: 10.1016/j.ribaf.2017.07.140
![]() |
[74] |
Ahmad W, Sadorsky P, Sharma A (2018) Optimal hedge ratios for clean energy equities. Econ Modell 72: 278–295. https://doi.org/10.1016/j.econmod.2018.02.008 doi: 10.1016/j.econmod.2018.02.008
![]() |
[75] |
Granger C (1969) Investigating causal relations by econometric models and cross-spectral Methods. Econometrica 37: 424–438. https://doi.org/10.2307/1912791 doi: 10.2307/1912791
![]() |
[76] |
Troster V (2018) Testing for granger-causality in quantiles. Econom Rev 7: 850–866. https://doi.org/10.1080/07474938.2016.1172400 doi: 10.1080/07474938.2016.1172400
![]() |
[77] |
Engle R, Sheppard K (2001) GARCH 101: The use of ARCH/GARCH models in applied econometrics. J Econ Perspect 15: 157–168. https://doi.org/10.1257/jep.15.4.157 doi: 10.1257/jep.15.4.157
![]() |
[78] | Alexander C (2008) Market Risk Analysis: Pricing, Hedging and Trading Financial Instruments. Hoboken: John Wiley & Sons Ltd. |
1. | Sana Abdulkream Alharbi, Azmin Sham Rambely, A New ODE-Based Model for Tumor Cells and Immune System Competition, 2020, 8, 2227-7390, 1285, 10.3390/math8081285 | |
2. | Bruno Carbonaro, Marco Menale, Towards the Dependence on Parameters for the Solution of the Thermostatted Kinetic Framework, 2021, 10, 2075-1680, 59, 10.3390/axioms10020059 | |
3. | Carlo Bianca, On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives, 2022, 15, 1996-1073, 7825, 10.3390/en15217825 | |
4. | Carlo Bianca, Thermostatted Kinetic Theory Structures in Biophysics: Generalizations and Perspectives, 2024, 4, 2673-9909, 1278, 10.3390/appliedmath4040069 | |
5. | Carlo Bianca, A decade of thermostatted kinetic theory models for complex active matter living systems, 2024, 50, 15710645, 72, 10.1016/j.plrev.2024.06.015 | |
6. | Carlo Bianca, The Role of the Table of Games in the Discrete Thermostatted Kinetic Theory, 2024, 12, 2227-7390, 2356, 10.3390/math12152356 | |
7. | Bruno Carbonaro, Marco Menale, A nonconservative kinetic framework under the action of an external force field: Theoretical results with application inspired to ecology, 2023, 34, 0956-7925, 1170, 10.1017/S0956792523000232 | |
8. | Fengling Jia, Peiyan He, Lixin Yang, A Novel Coupled Memristive Izhikevich Neuron Model and Its Complex Dynamics, 2024, 12, 2227-7390, 2244, 10.3390/math12142244 | |
9. | Bruno Carbonaro, Marco Menale, Markov Chains and Kinetic Theory: A Possible Application to Socio-Economic Problems, 2024, 12, 2227-7390, 1571, 10.3390/math12101571 | |
10. | Marco Menale, Ezio Venturino, A kinetic theory approach to modeling prey–predator ecosystems with expertise levels: analysis, simulations and stability considerations, 2024, 43, 2238-3603, 10.1007/s40314-024-02726-2 | |
11. | Muhammad Naeem Aslam, Nadeem Shaukat, Muhammad Sarmad Arshad, Muhammad Waheed Aslam, Javed Hussain, An intelligent approach for analyzing the effects of normal tumor immune unhealthy diet model through unsupervised physics informed neural-networks integrated with meta-heuristic algorithms, 2025, 18, 1864-5909, 10.1007/s12065-024-01007-5 |