Research article Special Issues

Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor

  • In the face of fluctuating petroleum costs and a growing demand for energy, the need for an alternative and sustainable energy source has increased. A viable solution for this problem can be attained by using thermochemical conversion, pyrolysis, of existing biomass sources for the production of liquid fuels. This study focuses on the effect that biomass particle size has on the conversion of biomass into liquid pyrolysis oil. Energy cane and Chinese tallow tree biomass were pyrolyzed at 550 ℃. The particle size ranges studied were < 0.5, 0.5 to 1.4, 1.4 to 2.4 and, 2.4 to 4.4 mm. The results indicate that the range from 0.5-1.4 mm is a better range for optimizing bio-oil production while keeping water content low.

    Citation: Gustavo Aguilar, Pranjali D. Muley, Charles Henkel, Dorin Boldor. Effects of biomass particle size on yield and composition of pyrolysis bio-oil derived from Chinese tallow tree (Triadica Sebifera L.) and energy cane (Saccharum complex) in an inductively heated reactor[J]. AIMS Energy, 2015, 3(4): 838-850. doi: 10.3934/energy.2015.4.838

    Related Papers:

    [1] Huilin Ge, Yuewei Dai, Zhiyu Zhu, Biao Wang . Robust face recognition based on multi-task convolutional neural network. Mathematical Biosciences and Engineering, 2021, 18(5): 6638-6651. doi: 10.3934/mbe.2021329
    [2] Chii-Dong Ho, Gwo-Geng Lin, Thiam Leng Chew, Li-Pang Lin . Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2021, 18(5): 5592-5613. doi: 10.3934/mbe.2021282
    [3] José M. Sigarreta . Extremal problems on exponential vertex-degree-based topological indices. Mathematical Biosciences and Engineering, 2022, 19(7): 6985-6995. doi: 10.3934/mbe.2022329
    [4] Qingqun Huang, Muhammad Labba, Muhammad Azeem, Muhammad Kamran Jamil, Ricai Luo . Tetrahedral sheets of clay minerals and their edge valency-based entropy measures. Mathematical Biosciences and Engineering, 2023, 20(5): 8068-8084. doi: 10.3934/mbe.2023350
    [5] Hao Wang, Guangmin Sun, Kun Zheng, Hui Li, Jie Liu, Yu Bai . Privacy protection generalization with adversarial fusion. Mathematical Biosciences and Engineering, 2022, 19(7): 7314-7336. doi: 10.3934/mbe.2022345
    [6] Meili Tang, Qian Pan, Yurong Qian, Yuan Tian, Najla Al-Nabhan, Xin Wang . Parallel label propagation algorithm based on weight and random walk. Mathematical Biosciences and Engineering, 2021, 18(2): 1609-1628. doi: 10.3934/mbe.2021083
    [7] Xinmei Liu, Xinfeng Liang, Xianya Geng . Expected Value of Multiplicative Degree-Kirchhoff Index in Random Polygonal Chains. Mathematical Biosciences and Engineering, 2023, 20(1): 707-719. doi: 10.3934/mbe.2023032
    [8] Fengwei Li, Qingfang Ye, Juan Rada . Extremal values of VDB topological indices over F-benzenoids with equal number of edges. Mathematical Biosciences and Engineering, 2023, 20(3): 5169-5193. doi: 10.3934/mbe.2023240
    [9] Stefano Cosenza, Paolo Crucitti, Luigi Fortuna, Mattia Frasca, Manuela La Rosa, Cecilia Stagni, Lisa Usai . From Net Topology to Synchronization in HR Neuron Grids. Mathematical Biosciences and Engineering, 2005, 2(1): 53-77. doi: 10.3934/mbe.2005.2.53
    [10] Qiming Li, Tongyue Tu . Large-pose facial makeup transfer based on generative adversarial network combined face alignment and face parsing. Mathematical Biosciences and Engineering, 2023, 20(1): 737-757. doi: 10.3934/mbe.2023034
  • In the face of fluctuating petroleum costs and a growing demand for energy, the need for an alternative and sustainable energy source has increased. A viable solution for this problem can be attained by using thermochemical conversion, pyrolysis, of existing biomass sources for the production of liquid fuels. This study focuses on the effect that biomass particle size has on the conversion of biomass into liquid pyrolysis oil. Energy cane and Chinese tallow tree biomass were pyrolyzed at 550 ℃. The particle size ranges studied were < 0.5, 0.5 to 1.4, 1.4 to 2.4 and, 2.4 to 4.4 mm. The results indicate that the range from 0.5-1.4 mm is a better range for optimizing bio-oil production while keeping water content low.


    To exemplify the phenomena of compounds scientifically, researchers utilize the contraption of the diagrammatic hypothesis, it is a well-known branch of geometrical science named graph theory. This division of numerical science provides its services in different fields of sciences. The particular example in networking [1], from electronics [2], and for the polymer industry, we refer to see [3]. Particularly in chemical graph theory, this division has extra ordinary assistance to study giant and microscope-able chemical compounds. For such a study, researchers made some transformation rules to transfer a chemical compound to a discrete pattern of shapes (graph). Like, an atom represents as a vertex and the covalent bonding between atoms symbolized as edges. Such transformation is known as molecular graph theory. A major importance of this alteration is that the hydrogen atoms are omitted. Some chemical structures and compounds conversion are presented in [4,5,6].

    In cheminformatics, the topological index gains attraction due to its implementations. Various topological indices help to estimate a bio-activity and physicochemical characteristics of a chemical compound. Some interesting and useful topological indices for various chemical compounds are studied in [3,7,8]. A topological index modeled a molecular graph or a chemical compound into a numerical value. Since 1947, topological index implemented in chemistry [9], biology [10], and information science [11,12]. Sombor index and degree-related properties of simplicial networks [13], Nordhaus–Gaddum-type results for the Steiner Gutman index of graphs [14], Lower bounds for Gaussian Estrada index of graphs [15], On the sum and spread of reciprocal distance Laplacian eigenvalues of graphs in terms of Harary index [16], the expected values for the Gutman index, Schultz index, and some Sombor indices of a random cyclooctane chain [17,18,19], bounds on the partition dimension of convex polytopes [20,21], computing and analyzing the normalized Laplacian spectrum and spanning tree of the strong prism of the dicyclobutadieno derivative of linear phenylenes [22], on the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks [23,24], Zagreb indices and multiplicative Zagreb indices of Eulerian graphs [25], Minimizing Kirchhoff index among graphs with a given vertex bipartiteness, [26], asymptotic Laplacian energy like invariant of lattices [27]. Few interesting studies regarding the chemical graph theory can be found in [28,29,30,31,32].

    Recently, the researchers of [33] introduced a topological descriptor and called the face index. Moreover, the idea of computing structure-boiling point and energy of a structure, motivated them to introduced this parameter without heavy computation. They computed these parameters for different models compare the results with previous literature and found approximate solutions with comparatively less computations. This is all the blessings of face index of a graph. The major concepts of this research work are elaborated in the given below definitions.

    Definition 1.1. [33] Let a graph $ G = \left(V(G), E(G), F(G)\right) $ having face, edge and vertex sets notation with $ F(G), E(G), V(G), $ respectively. It is mandatory that the graph is connected, simple and planar. If $ e $ from the edge set $ E(G), $ is one of those edges which surrounds a face, then the face $ f $ from the face set $ F(G), $ is incident to the edge $ e. $ Likewise, if a vertex $ \alpha $ from the vertex set $ V(G) $ is at the end of those incident edges, then a face $ f $ is incident to that vertex. This face-vertex incident relation is symbolized here by the notation $ \alpha\sim f. $ The face degree of $ f $ in $ G $ is described as $ d(f) = \sum_{\alpha\sim f}{d\left(\alpha\right)}, $ which are elaborated in the Figure 1.

    Figure 1.  An example of face degree.

    Definition 1.2. [33] The face index $ FI\left(G\right), $ for a graph $ G, $ is formulated as

    $ FI(G)=fF(G)d(f)=αf,fF(G)d(α).
    $

    In the Figure 1, we can see that there are two faces with degree $ 4, $ exactly two with five count and four with count of 6. Moreover, there is an external face with count of face degree $ 28, $ which is the count of vertices.

    As the information given above that the face index is quite new and introduced in the year 2020, so there is not so much literature is available. A few recent studies on this topic are summarized here. A chemical compound of silicon carbides is elaborated with such novel definition in [34]. Some carbon nanotubes are discussed in [35]. Except for the face index, there are distance and degree-based graphical descriptors available in the literature. For example, distance-based descriptors of phenylene nanotube are studied in [36], and in [37] titania nanotubes are discussed with the same concept. Star networks are studied in [38], with the concept of degree-based descriptors. Bounds on the descriptors of some generalized graphs are discussed in [39]. General Sierpinski graph is discussed in [40], in terms of different topological descriptor aspects. The study of hyaluronic acid-doxorubicin ar found in [41], with the same concept of the index. The curvilinear regression model of the topological index for the COVID-19 treatment is discussed in [42]. For further reading and interesting advancements of topological indices, polynomials of zero-divisor structures are found in [43], zero divisor graph of commutative rings [44], swapped networks modeled by optical transpose interconnection system [45], metal trihalides network [46], some novel drugs used in the cancer treatment [47], para-line graph of Remdesivir used in the prevention of corona virus [48], tightest nonadjacently configured stable pentagonal structure of carbon nanocones [49]. In order to address a novel preventive category (P) in the HIV system known as the HIPV mathematical model, the goal of this study is to offer a design of a Morlet wavelet neural network (MWNN) [50].

    In the next section, we discussed the newly developed face index or face-based index for different chemical compounds. Silicate network, triangular honeycomb network, carbon sheet, polyhedron generalized sheet, and generalized chain of silicate network are studied with the concept of the face-based index. Given that the face index is more versatile than vertex degree-based topological descriptors, this study will aid in understanding the structural characteristics of chemical networks. Only the difficulty authors will face to compute the face degree of a generalized network or structure, because it is more generalized version and taking degree based partition of edges into this umbrella of face index.

    Silicates are formed when metal carbonates or metal oxides react with sand. The $ SiO_4, $ which has a tetrahedron structure, is the fundamental chemical unit of silicates. The central vertex of the $ SiO_4 $ tetrahedron is occupied by silicon ions, while the end vertices are occupied by oxygen ions [51,52,53]. A silicate sheet is made up of rings of tetrahedrons that are joined together in a two-dimensional plane by oxygen ions from one ring to the other to form a sheet-like structure. The silicate network $ SL_{n} $ symbol, where $ {n} $ represents the total number of hexagons occurring between the borderline and center of the silicate network $ SL_{n}. $ The silicate network of dimension one is depicted in Figure 2. It contain total $ 3{n}\left(5{n}+1\right) $ vertices are $ 36{n}^2 $ edges. Moreover, the result required is detailed are available in Table 1.

    Figure 2.  A silicate network $ SL_{1} $.
    Table 1.  The number of $ f_{12}, $ $ f_{15} $ and $ f_{36} $ in each dimension.
    Dimension $ {\bf{|}}{\boldsymbol{f}}_{{\bf{12}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{15}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{36}}}{\bf{|}} $
    $ 1 $ $ 24 $ $ 48 $ $ 7 $
    $ 2 $ $ 32 $ $ 94 $ $ 14 $
    $ 3 $ $ 40 $ $ 152 $ $ 23 $
    $ 4 $ $ 48 $ $ 222 $ $ 34 $
    $ 5 $ $ 56 $ $ 304 $ $ 47 $
    $ 6 $ $ 64 $ $ 398 $ $ 62 $
    $ 7 $ $ 72 $ $ 504 $ $ 79 $
    $ 8 $ $ 80 $ $ 622 $ $ 98 $
    . . . .
    . . . .
    . . . .
    $ {n} $ $ 8{n}+16 $ $ 6{n}^{2}+28{n}+14 $ $ {n}^{2}+4{n}+2 $

     | Show Table
    DownLoad: CSV

    Theorem 2.1. Let $ SL_{n} $ be the silicate network of dimension $ n\geq1. $ Then the face index of $ SL_{n} $ is

    $ FI(SLn)=126n2+720n+558.
    $

    Proof. Consider $ SL_{n} $ the graph of silicate network with dimension $ {n}. $ Suppose $ f_{i} $ denotes the faces of graph $ SL_{n} $ having degree $ i. $ that is, $ d(f_{i}) = \sum_{\alpha\sim f_{i}}{d\left(\alpha\right)} = i $ and $ |f_{i}| $ denotes the number of faces with degree $ i. $ The graph $ SL_{n} $ contains three types of internal faces $ f_{12}, $ $ f_{15}, $ $ f_{36}, $ and single external face which is usually denoted by $ f^{\infty}. $

    If $ SL_{n} $ has one dimension then sum of degree of vertices incident to the external face is $ 144 $ and when $ SL_{n} $ has two dimension then sum of degree of incident vertices to the external face is $ 204 $ whenever $ SL_{n} $ has three dimension then sum of degree of incident vertices to the external face is $ 264. $ Similarly, $ SL_{n} $ has $ n- $dimension then sum of degree of incident vertices to the external face is $ 60n+84. $

    The number of internal faces with degree in each dimension is mentioned in Table 1.

    By using the definition of face index $ FI $ we have

    $ FI(SLn)=αfF(SLn)d(α)=αf12F(SLn)d(α)+αf15F(SLn)d(α)+αf36F(SLn)d(α)+αfF(SLn)d(α)=|f12|(12)+|f15|(15)+|f36|(36)+(60n+84)=(8n+16)(12)+(6n2+28n+14)(15)+(n2+4n+2)(36)+60n+84=126n2+72n+558.
    $

    Hence, this is our required result.

    A chain silicate network of dimension $ (m, n) $ is symbolized as $ CSL\left(m, n\right) $ which is made by arranging $ (m, n) $ tetrahedron molecules linearly. A chain silicate network of dimension $ (m, n) $ with $ m, n\geq1 $ where $ m $ denotes the number of rows and each row has $ n $ number of tetrahedrons. The following theorem formulates the face index $ FI $ for chain silicate network.

    Theorem 2.2. Let $ CSL\left(m, n\right) $ be the chain of silicate network of dimension $ m, n\geq1. $ Then the face index $ FI $ of the graph $ CSL\left(m, n\right) $ is

    $ FI(CSL(m,n))={48n12if m=1, n1;96m12if n=1, m2;168m60if n=2,m2;45m9n+36mn42if both m,n are even45m9n+36mn21otherwise.
    $

    Proof. Let $ CSL\left(m, n\right) $ be the graph of chain silicate network of dimension $ (m, n) $ with $ m, n\geq1 $ where $ m $ represents the number of rows and $ n $ is the number of tetrahedrons in each row. A graph $ CSL\left(m, n\right) $ for $ m = 1 $ contains three type of internal faces $ f_{9}, \ f_{12} $ and $ f_{15} $ with one external face $ f^{\infty}. $ While for $ m\geq2, $ it has four type of internal faces $ f_{9}, \ f_{12}, \ f_{15} $ and $ f_{36} $ with one external face $ f^{\infty}. $ We want to evaluate the algorithm of face index $ FI $ for chain silicate network. We will discuss it in two different cases.

    Case 1: When $ CSL\left(m, n\right) $ has one row $ (m = 1) $ with $ n $ number of tetrahedrons as shown in the Figure 3.

    Figure 3.  Chain silicate network $ CSL\left(m, n\right) $ with particular value of $ m = 1 $.

    The graph has three type of internal faces $ f_{9}, \ f_{12} $ and $ f_{15} $ with one external face $ f^{\infty}. $ The sum of degree of incident vertices to the external face is $ 9n $ and number of faces are $ |f_{9}| = 2, \ |f_{12}| = 2n $ and $ |f_{15}| = n-2. $ Now the face index $ FI $ of the graph $ CSL\left(m, n\right) $ is given by

    $ FI(CSL(m,n))=αfF(CSL(m,n))d(α)=αf9F(CSL(m,n))d(α)+αf12F(CSL(m,n))d(α)+αf15F(CSL(m,n))d(α)+αfF(CSL(m,n))d(α)=|f9|(9)+|f12|(12)+|f15|(15)+(9n)=(2)(9)+(2n)(12)+(n2)(15)+9n=48n12.
    $

    Case 2: When $ CSL\left(m, n\right) $ has more than one rows $ (m\neq1) $ with $ n $ number of tetrahedrons in each row as shown in the Figure 4.

    Figure 4.  Chain silicate network $ CSL\left(m, n\right) $.

    The graph has four type of internal faces $ f_{9}, \ f_{12}, \ f_{15} $ and $ f_{36} $ with one external face $ f^{\infty}. $ The sum of degree of incident vertices to the external face is

    $ αfF(CSL(m,n))d(α)={18mif n=1, m1;27mif n=2, m1;30m+15n30if both m,n are even30m+15n33otherwise.
    $

    The number of faces are $ |f_{9}|, \ |f_{12}|, \ f_{15} $ and $ |f_{36}| $ are given by

    $ |f9|={2if  m is odd3+(1)nif  m is even.|f12|={2(2m+n1)if m is odd4(n+12+2m1)if m is even|f15|=(3m2)nm|f36|={(m12)(n1)if m is odd(2n+(1)n14)(m22)nif m is even.
    $

    Now the face index $ FI $ of the graph $ CSL\left(m, n\right) $ is given by

    $ FI(CSL(m,n))=αfF(CSL(m,n))d(α)=αf9F(CSL(m,n))d(α)+αf12F(CSL(m,n))d(α)+αf15F(CSL(m,n))d(α)+αf36F(CSL(m,n))d(α)+αfF(CSL(m,n))d(α)=|f9|(9)+|f12|(12)+|f15|(15)+|f36|(36)+αfF(CSL(m,n))d(α).
    $

    After some mathematical simplifications, we can get

    $ FI(CSL(m,n))={48n12if m=196m12if n=1,m168m60if n=2,m45m9n+36mn42if both m,n are even45m9n+36mn21otherwise.
    $

    There are three regular plane tessellations known to exist, each constituted from the same type of regular polygon: triangular, square, and hexagonal. The triangular tessellation is used to define the hexagonal network, which is extensively studied in [54]. A dimensioned hexagonal network $ TH_{k} $ has $ 3{k}^2-3{k}+1 $ vertices and $ 9{k}^2-15{k}+6 $ edges, where $ {k} $ is the number of vertices on one side of the hexagon. It has $ 2{k}-2 $ diameter. There are six vertices of degree three that are referred to as corner vertices. Moreover, the result required detailed are available in the Table 2.

    Figure 5.  Triangular honeycomb network with dimension $ {k}=3 $.
    Table 2.  The number of $ f_{12}, $ $ f_{14}, $ $ f_{17} $ and $ f_{18} $ in each dimension.
    Dimension $ {\bf{|}}{\boldsymbol{f}}_{{\bf{12}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{14}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{17}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{18}}}{\bf{|}} $
    $ 1 $ $ 6 $ $ 0 $ $ 0 $ $ 0 $
    $ 2 $ $ 6 $ $ 12 $ $ 12 $ $ 12 $
    $ 3 $ $ 6 $ $ 24 $ $ 24 $ $ 60 $
    $ 4 $ $ 6 $ $ 36 $ $ 36 $ $ 144 $
    $ 5 $ $ 6 $ $ 48 $ $ 48 $ $ 264 $
    $ 6 $ $ 6 $ $ 60 $ $ 60 $ $ 420 $
    $ 7 $ $ 6 $ $ 72 $ $ 72 $ $ 612 $
    $ 8 $ $ 6 $ $ 84 $ $ 84 $ $ 840 $
    . . . . .
    . . . . .
    . . . . .
    $ {k} $ $ 6 $ $ 12({k}-1) $ $ 12({k}-1) $ $ 18{k}^{2}-42{k}+24 $

     | Show Table
    DownLoad: CSV

    Theorem 2.3. Let $ TH_{k} $ be the triangular honeycomb network of dimension $ k\geq1. $ Then the face index of graph $ TH_{k} $ is

    $ FI(THk)=324k2336k+102.
    $

    Proof. Consider $ TH_{k} $ be a graph of triangular honeycomb network. The graph $ TH_{1} $ has one internal and only one external face while graph $ TH_{k} $ with $ k\geq2, $ contains four types of internal faces $ f_{12}, $ $ f_{14}, $ $ f_{17}, $ and $ f_{18} $ with one external face $ f^{\infty}. $

    For $ TH_{1} $ the sum of degree of incident vertices to the external face is $ 18 $ and in $ TH_{2} $ the sum of degree of incident vertices to the external face is $ 66. $ Whenever the graph $ TH_{3}, $ the sum of degree of incident vertices to the external face is $ 114. $ Similarly, for $ TH_{k} $ has $ n- $dimension then sum of degree of incident vertices to the external face is $ 48k-30. $

    The number of internal faces with degree in each dimension is given in Table 2.

    By using the definition of face index $ FI $ we have

    $ FI(THk)=αfF(THk)d(α)=αf12F(THk)d(α)+αf14F(THk)d(α)+αf17F(THk)d(α)+αf18F(THk)d(α)+αfF(THk)d(α)=|f12|(12)+|f14|(14)+|f17|(17)+|f18|(18)+(48k30)=(6)(12)+(12(k1))(14)+(12(k1))(17)+(18k242k+24)(18)+48k30=324k2336k+102.
    $

    Hence, this is our required result.

    Given carbon sheet in the Figure 6, is made by grid of hexagons. There are few types of carbon sheets are given in [55,56]. The carbon sheet is symbolize as $ HCS_{{m}, {n}}, $ where $ {n} $ represents the total number of vertical hexagons and $ {m} $ denotes the horizontal hexagons. It contain total $ 4{m}{n}+2\left({n}+{m}\right)-1 $ vertices and $ 6{n}{m}+2{m}+{n}-2 $ edges. Moreover, the result required detailed are available in Tables 3 and 4.

    Figure 6.  Carbon Sheet $ HCS_{{m}, {n}} $.
    Table 3.  The number of $ f_{15}, $ $ f_{16}, $ and $ f_{18} $ in each dimension.
    Dimension $ {{\boldsymbol{m}}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{15}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{16}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{18}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}^{{\bf{\infty}}}{\bf{|}} $
    $ 2 $ $ 3 $ $ 2\left({n}-1\right) $ $ {n}-1 $ $ 20{n}+7 $

     | Show Table
    DownLoad: CSV
    Table 4.  The number of $ f_{15}, $ $ f_{16}, $ $ f_{17}, $ $ f_{18}, $ and $ f^{\infty} $ in each dimension.
    Dimension $ {{\boldsymbol{m}}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{15}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{16}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{17}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{18}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}^{{\bf{\infty}}}{\bf{|}} $
    $ 2 $ $ 3 $ $ 2\left({n}-1\right) $ $ 0 $ $ {n}-1 $ $ 20{n}+7 $
    $ 3 $ $ 2 $ $ 2{n} $ $ 1 $ $ 3\left({n}-1\right) $ $ 20{n}+17 $
    $ 4 $ $ 2 $ $ 2{n} $ $ 3 $ $ 5\left({n}-1\right) $ $ 20{n}+27 $
    $ 5 $ $ 2 $ $ 2{n} $ $ 5 $ $ 7\left({n}-1\right) $ $ 20{n}+37 $
    $ 6 $ $ 2 $ $ 2{n} $ $ 7 $ $ 9\left({n}-1\right) $ $ 20{n}+47 $
    . . . . . .
    . . . . . .
    . . . . . .
    $ {m} $ $ 2 $ $ 2{n} $ $ 2{m}-5 $ $ 2{m}{n}-2{m}-3{n}+3 $ $ 20{n}+10{m}-13 $

     | Show Table
    DownLoad: CSV

    Theorem 2.4. Let $ HCS_{{m}, {n}} $ be the carbon sheet of dimension $ \left({m}, {n}\right) $ and $ {m}, {n}\geq2. $ Then the face index of $ HCS_{{m}, {n}} $ is

    $ FI(HCSm,n)={70n+2ifm=236mn142(n4m)ifm3.
    $

    Proof. Consider $ HCS_{{m}, {n}} $ be the carbon sheet of dimension $ \left({m}, {n}\right) $ and $ {m}, {n}\geq2. $ Let $ {f}_{i} $ denotes the faces of graph $ HCS_{{m}, {n}} $ having degree $ {i}, $ which is $ d(f_{i}) = \sum_{\alpha\sim f_{i}}{d\left(\alpha\right)} = i, $ and $ |f_{i}| $ denotes the number of faces with degree $ i. $ A graph $ HCS_{{m}, {n}} $ for a particular value of $ {m} = 2 $ contains three types of internal faces $ {f}_{15}, $ $ {f}_{16}, $ $ {f}_{17} $ and $ {f}_{18} $ with one external face $ {f}^{\infty}. $ While for the generalize values of $ {m}\geq3, $ it contain four types of internal faces $ {f}_{15}, $ $ {f}_{16} $ and $ {f}_{17} $ with one external face $ {f}^{\infty} $ in usual manner. For the face index of generalize nanotube, we will divide into two cases on the values of $ {m}. $

    Case 1: When $ HCS_{{m}, {n}} $ has one row or $ HCS_{{2}, {n}}. $

    A graph $ HCS_{{m}, {n}} $ for a this particular value of $ {m} = 2 $ contains three types of internal faces $ \left|{f}_{15}\right| = 3, $ $ \left|{f}_{16}\right| = 2\left({n}-1\right) $ and $ \left|{f}_{18}\right| = {n}-1 $ with one external face $ {f}^{\infty}. $ For the face index of carbon sheet, details are given in the Table 3. Now the face index $ FI $ of the graph $ NT_{{2}, {n}} $ is given by

    $ FI(HCS2,n)=αfF(HCS2,n)d(α)=αf15F(HCS2,n)d(α)+αf16F(HCS2,n)d(α)+αf18F(HCS2,n)d(α)+αfF(HCS2,n)d(α)=|f15|(15)+|f16|(16)+|f18|(18)+20n+7.=3(15)+2(n1)(16)+(n1)(18)+20n+7.=70n+2.
    $

    Case 2: When $ HCS_{{m}, {n}} $ has $ {m}\geq3 $ rows.

    A graph $ HCS_{{m}, {n}} $ for generalize values of $ {m}\geq3 $ contains four types of internal faces $ \left|{f}_{15}\right| = 2, $ $ \left|{f}_{16}\right| = 2{n}, $ $ \left|{f}_{17}\right| = 2{m}-5 $ and $ \left|{f}_{18}\right| = 2{m}{n}-2{m}-3{n}+3 $ with one external face $ {f}^{\infty}. $ For the face index of carbon sheet, details are given in the Table 4. Now the face index $ FI $ of the graph $ NT_{{m}, {n}} $ is given by

    $ FI(HCSm,n)=αfF(HCSm,n)d(α)=αf15F(HCSm,n)d(α)+αf16F(HCSm,n)d(α)+αf17F(HCSm,n)d(α)+αf18F(HCSm,n)d(α)+αfF(HCSm,n)d(α)=|f15|(15)+|f16|(16)+|f17|(17)+|f18|(18)+20n+10m13.=36mn2n+8m14.
    $

    Given structure of polyhedron generalized sheet of $ C^{\ast}_{28} $ in the Figure 7, is made by generalizing a $ C^{\ast}_{28} $ polyhedron structure which is shown in the Figure 8. This particular structure of $ C^{\ast}_{28} $ polyhedron are given in [57]. The polyhedron generalized sheet of $ C^{\ast}_{28} $ is as symbolize $ PHS_{{m}, {n}}, $ where $ {n} $ represents the total number of vertical $ C^{\ast}_{28} $ polyhedrons and $ {m} $ denotes the horizontal $ C^{\ast}_{28} $ polyhedrons. It contain total $ 23{n}{m}+3{n}+2{m} $ vertices and $ 33{n}{m}+{n}+{m} $ edges. Moreover, the result required detailed are available in Tables 3 and 5.

    Figure 7.  Polyhedron generalized sheet of $ C^{\ast}_{28} $ for $ {m} = {n} = 1, $ or $ PHS_{{1}, {1}} $.
    Figure 8.  Polyhedron generalized sheet of $ C^{\ast}_{28} $ or $ PHS_{{m}, {n}} $.
    Table 5.  The number of $ f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{20}, $ and $ f_{35} $ in each dimension.
    $ {{\boldsymbol{m}}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{14}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{15}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{16}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{17}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{18}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{20}}}{\bf{|}} $ $ {\bf{|}}{\boldsymbol{f}}_{{\bf{35}}}{\bf{|}} $
    $ 1 $ $ 2{n}+1 $ $ 2 $ $ 4{n}-2 $ $ 0 $ $ 0 $ $ 2{n}-1 $ $ 0 $
    $ 2 $ $ 2{n}+2 $ $ 2 $ $ 8{n}-2 $ $ 2 $ $ 2{n}-2 $ $ 4{n}-2 $ $ 2{n}-1 $
    $ 3 $ $ 2{n}+3 $ $ 2 $ $ 12{n}-2 $ $ 4 $ $ 4{n}-4 $ $ 6{n}-3 $ $ 4{n}-2 $
    . . . . . . . .
    . . . . . . . .
    . . . . . . . .
    $ {m} $ $ 2{n}+{m} $ $ 2 $ $ 4{m}{n}-2 $ $ 2{m}-2 $ $ 2{m}{n}-2\left({m}+{n}\right)+2 $ $ 2{m}{n}-{m} $ $ 2{m}{n}-\left({m}+2{n}\right)+1 $

     | Show Table
    DownLoad: CSV

    Theorem 2.5. Let $ PHS_{{m}, {n}} $ be the polyhedron generalized sheet of $ C^{\ast}_{28} $ of dimension $ \left({m}, {n}\right) $ and $ {m}, {n}\geq1. $ Then the face index of $ PHS_{{m}, {n}} $ is

    $ FI(PHSm,n)=210mn2(3m+5n).
    $

    Proof. Consider $ PHS_{{m}, {n}} $ be the polyhedron generalized sheet of $ C^{\ast}_{28} $ of dimension $ \left({m}, {n}\right) $ and $ {m}, {n}\geq1. $ Let $ {f}_{i} $ denotes the faces of graph $ PHS_{{m}, {n}} $ having degree $ {i}, $ which is $ d(f_{i}) = \sum_{\alpha\sim f_{i}}{d\left(\alpha\right)} = i, $ and $ |f_{i}| $ denotes the number of faces with degree $ i. $ A graph $ PHS_{{m}, {n}} $ for the generalize values of $ {m}, {n}\geq1, $ it contain seven types of internal faces $ {f}_{14}, {f}_{15}, {f}_{16}, {f}_{17}, {f}_{18}, {f}_{20} $ and $ {f}_{35} $ with one external face $ {f}^{\infty} $ in usual manner. For the face index of polyhedron generalized sheet, details are given in the Table 5.

    A graph $ PHS_{{m}, {n}} $ for generalize values of $ {m}, {n}\geq1 $ contains seven types of internal faces $ \left|{f}_{14}\right| = 2{n}+{m}, $ $ \left|{f}_{15}\right| = 2, $ $ \left|{f}_{16}\right| = 4{n}{m}-2, $ $ \left|{f}_{17}\right| = 2\left({m}-1\right), $ $ \left|{f}_{18}\right| = 2{n}{m}-2\left({m}+{n}\right)+2, $ $ \left|{f}_{20}\right| = 2{n}{m}-2{m}{n}-{m}, $ and $ \left|{f}_{35}\right| = 2{m}{n}-{m}-2{n}+1 $ with one external face $ {f}^{\infty}. $ Now the face index $ FI $ of the graph $ PHS_{{m}, {n}} $ is given by

    $ FI(PHSm,n)=αfF(PHSm,n)d(α)=αf14F(PHSm,n)d(α)+αf15F(PHSm,n)d(α)+αf16F(PHSm,n)d(α)+αf17F(PHSm,n)d(α)+αf18F(PHSm,n)d(α)+αf20F(PHSm,n)d(α)+αf35F(PHSm,n)d(α)+αfF(PHSm,n)d(α)=|f14|(14)+|f15|(15)+|f16|(16)+|f17|(17)+|f18|(18)+|f20|(20)+|f35|(35)+37m+68n35.=210mn6m10n.
    $

    With the advancement of technology, types of equipment and apparatuses of studying different chemical compounds are evolved. But topological descriptors or indices are still preferable and useful tools to develop numerical science of compounds. Therefore, from time to time new topological indices are introduced to study different chemical compounds deeply. In this study, we discussed a newly developed tool of some silicate type networks and generalized sheets, carbon sheet, polyhedron generalized sheet, with the face index concept. It provides numerical values of these networks based on the information of faces. It also helps to study physicochemical characteristics based on the faces of silicate networks.

    M. K. Jamil conceived of the presented idea. K. Dawood developed the theory and performed the computations. M. Azeem verified the analytical methods, R. Luo investigated and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

    This work was supported by the National Science Foundation of China (11961021 and 11561019), Guangxi Natural Science Foundation (2020GXNSFAA159084), and Hechi University Research Fund for Advanced Talents (2019GCC005).

    The authors declare that they have no conflicts of interest.

    [1] Muley PD, Henkel C, Abdollahi KK, et al. (2015) Pyrolysis and Catalytic Upgrading of Pinewood Sawdust Using Induction Heating Reactor. Energ Fuel.
    [2] Urbatsch L (2000) Chinese tallow tree (Triadica sebifera (L.) Small. Plant Guide. Natural Resources Conservation Service (NRCS).
    [3] Heo HS, Park HJ, Park Y-K, et al. (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresource technol 101: S91-S96. doi: 10.1016/j.biortech.2009.06.003
    [4] Lu Q, Yang Xl, Zhu Xf (2008) Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrol 82: 191-198. doi: 10.1016/j.jaap.2008.03.003
    [5] McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresource Technol 83: 47-54. doi: 10.1016/S0960-8524(01)00119-5
    [6] Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energ Fuel 20: 848-889. doi: 10.1021/ef0502397
    [7] Bergström D, Israelsson S, ñhman M, et al. (2008) Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process Technol 89: 1324-1329. doi: 10.1016/j.fuproc.2008.06.001
    [8] Liao R, Gao B, Fang J (2013) Invasive plants as feedstock for biochar and bioenergy production. Bioresource technol 140: 439-442. doi: 10.1016/j.biortech.2013.04.117
    [9] Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30: 1479-1493. doi: 10.1016/S0146-6380(99)00120-5
    [10] Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrol 76: 230-237. doi: 10.1016/j.jaap.2005.11.007
    [11] Uzun BB, Kanmaz G (2013) Effect of operating parameters on bio-fuel production from waste furniture sawdust. Waste Manage Res 31: 361-367. doi: 10.1177/0734242X12470402
    [12] Ateş F, Pütün E, Pütün AE (2004) Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrol 71: 779-790. doi: 10.1016/j.jaap.2003.11.001
    [13] Miao Z, Grift TE, Hansen AC, et al. (2011) Energy requirement for comminution of biomass in relation to particle physical properties. Ind Crop Prod 33: 504-513. doi: 10.1016/j.indcrop.2010.12.016
    [14] Onay ñ (2003) Production of Bio-Oil from Biomass: Slow Pyrolysis of Rapeseed (Brassica napus L.) in a Fixed-Bed Reactor. Energ Sources 25: 879-892.
    [15] Şensöz S, Angın D, Yorgun S (2000) Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): fuel properties of bio-oil. Biomass Bioenerg 19: 271-279.
    [16] Rhén C, Gref R, Sjöström M, et al. (2005) Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process Technol 87: 11-16. doi: 10.1016/j.fuproc.2005.03.003
    [17] Shen J, Wang XS, Garcia-Perez M, et al. (2009) Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88: 1810-1817. doi: 10.1016/j.fuel.2009.05.001
    [18] Bennadji H, Smith K, Serapiglia MJ, et al. (2014) Effect of Particle Size on Low-Temperature Pyrolysis of Woody Biomass. Energ Fuel 28: 7527-7537. doi: 10.1021/ef501869e
    [19] Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biot38: 803-807.
    [20] Jubinsky G, Anderson LC (1996) The invasive potential of Chinese tallow-tree (Sapium sebiferum Roxb.) in the Southeast. Castanea: 226-231.
    [21] Fennell LP, Boldor D (2013) Dielectric characterization of the seeds of invasive Chinese Tallow Tree. J Microwave Power EE 47: 237-250.
    [22] Henkel C (2014) A Study of Induction Pyrolysis of Lignocellulosic Biomass for the Production of Bio-oil: Louisiana State University.
    [23] Bedmutha RJ, Ferrante L, Briens C, et al. (2009) Single and two-stage electrostatic demisters for biomass pyrolysis application. Chem Eng Process: Process Intensification 48: 1112-1120. doi: 10.1016/j.cep.2009.02.007
    [24] Scholze B, Meier D (2001) Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY-GC/MS, FTIR, and functional groups. J Anal Appl Pyrol 60: 41-54.
    [25] Demirbas A, Demirbas H (2004) Estimating the Calorific Values of Lignocellulosic Fuels. Energ Explor Exploit 22: 135. doi: 10.1260/0144598041475198
    [26] Luo S, Xiao B, Hu Z, et al. (2010) Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int J Hydrogen Energ 35: 93-97. doi: 10.1016/j.ijhydene.2009.10.048
    [27] Vamvuka D, Kakaras E, Kastanaki E, et al. (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82: 1949-1960. doi: 10.1016/S0016-2361(03)00153-4
    [28] Jung SH, Kang BS, Kim JS (2008) Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrol 82: 240-247. doi: 10.1016/j.jaap.2008.04.001
  • This article has been cited by:

    1. Shabana Anwar, Muhammad Kamran Jamil, Amal S. Alali, Mehwish Zegham, Aisha Javed, Extremal values of the first reformulated Zagreb index for molecular trees with application to octane isomers, 2023, 9, 2473-6988, 289, 10.3934/math.2024017
    2. Ali N. A. Koam, Ali Ahmad, Raed Qahiti, Muhammad Azeem, Waleed Hamali, Shonak Bansal, Enhanced Chemical Insights into Fullerene Structures via Modified Polynomials, 2024, 2024, 1076-2787, 10.1155/2024/9220686
    3. Ali Ahmad, Ali N. A. Koam, Muhammad Azeem, Reverse-degree-based topological indices of fullerene cage networks, 2023, 121, 0026-8976, 10.1080/00268976.2023.2212533
    4. Muhammad Waheed Rasheed, Abid Mahboob, Iqra Hanif, Uses of degree-based topological indices in QSPR analysis of alkaloids with poisonous and healthful nature, 2024, 12, 2296-424X, 10.3389/fphy.2024.1381887
    5. Shriya Negi, Vijay Kumar Bhat, Face Index of Silicon Carbide Structures: An Alternative Approach, 2024, 16, 1876-990X, 5865, 10.1007/s12633-024-03119-0
    6. Haseeb AHMAD, Muhammad AZEEM, Face-degree-based topological descriptors of germanium phosphide, 2024, 52, 18722040, 100429, 10.1016/j.cjac.2024.100429
    7. Belman Gautham Shenoy, Raghavendra Ananthapadmanabha, Badekara Sooryanarayana, Prasanna Poojary, Vishu Kumar Mallappa, 2024, Rational Wiener Index and Rational Schultz Index of Graphs, 180, 10.3390/engproc2023059180
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7163) PDF downloads(1299) Cited by(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog