Research article

Normal forms, invariant manifolds and Lyapunov theorems

  • Received: 23 November 2022 Revised: 11 May 2023 Accepted: 22 May 2023 Published: 26 June 2023
  • Primary 05C38, 15A15; Secondary 05A15, 15A18

  • We present an approach to Lyapunov theorems about a center for germs of analytic vector fields based on the Poincaré–Dulac and Birkhoff normal forms. Besides new proofs of three Lyapunov theorems, we prove their generalization: if the Poincaré–Dulac normal form indicates the existence of a family of periodic solutions, then such a family really exists. We also present new proofs of Weinstein and Moser theorems about lower bounds for the number of families of periodic solutions; here, besides the normal forms, some topological tools are used, i.e., the Poincaré–Hopf formula and the Lusternik–Schnirelmann category on weighted projective spaces.

    Citation: Henryk Żołądek. Normal forms, invariant manifolds and Lyapunov theorems[J]. Communications in Analysis and Mechanics, 2023, 15(2): 300-341. doi: 10.3934/cam.2023016

    Related Papers:

  • We present an approach to Lyapunov theorems about a center for germs of analytic vector fields based on the Poincaré–Dulac and Birkhoff normal forms. Besides new proofs of three Lyapunov theorems, we prove their generalization: if the Poincaré–Dulac normal form indicates the existence of a family of periodic solutions, then such a family really exists. We also present new proofs of Weinstein and Moser theorems about lower bounds for the number of families of periodic solutions; here, besides the normal forms, some topological tools are used, i.e., the Poincaré–Hopf formula and the Lusternik–Schnirelmann category on weighted projective spaces.



    加载中


    [1] A. A Andronov, E. A. Leontovich, A. G. Gordon, A. G. Maier, Qualitative Theory of Second–Order Dynamical Systems, Halsted Press, New York, 1973. https://doi.org/10.1137/1017026
    [2] R. F. Arenstorf, Central configurations of four bodies with one inferior mass, Celestial Mech., 28 (1982), 9–15. https://doi.org/10.1007/BF01230655 doi: 10.1007/BF01230655
    [3] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1983. https://doi.org/10.1007/978-1-4612-1037-5
    [4] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of the Mathematical and Celestial Mechanics, Encyclopaedia of Math. Sci., Dynamical Systems, 3, Springer, New York, 1988. https://doi.org/10.2307/3619341
    [5] A. Baider, J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case, J. Differ. Equations, 92 (1991), 282–304. https://doi.org/10.1016/0022-0396(91)90050-J doi: 10.1016/0022-0396(91)90050-J
    [6] J. F. Barros, E. Leandro, Bifurcations and enumeration of classes of relative equilibria in the planar restricted four-body problem, SIAM J. Math. Anal., 46 (2014), 1185–1203. https://doi.org/10.1137/130911342 doi: 10.1137/130911342
    [7] W. Barwicz, M. Wiliński, H. Żołądek, Birkhoff normalization, bifurcations of Hamiltonian vector fields and the Deprits formula, J. Fixed Point Theory Appl. 13 (2013), 587–610. https://doi.org/10.1007/s11784-013-0136-1
    [8] G. D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providence, 1927. https://doi.org/10.1016/B978-044450871-3/50149-2
    [9] C. A. Briot, J. C. Bouquet, Recherches sur les propriétés des fonctions définies par des équations différentiells, J. Éc. Polytech. 36 (1856), 133–198.
    [10] E. N. Dancer, S. Rybicki, A note on periodic solutions of autonomous Hamiltonian systems emanating from degenerate stationary solutions, Differ. Integr. Equations, 12 (1999), 147–160. https://doi.org/10.57262/die/1367265626 doi: 10.57262/die/1367265626
    [11] I. Dolgachev, Weighted projective varieties, Lect. Notes in Math., 956 (1982), Springer, Berlin, 34–71. https://doi.org/10.1007/BFB0101508 doi: 10.1007/BFB0101508
    [12] J. J. Duistermaat, The monodromy in the Hamiltonian Hopf bifurcation, Z. angew. Math. Phys. 49 (1998), 156–161. https://doi.org/10.1007/s000330050086
    [13] H. Dulac, Sur les cycles limites, Bull. Soc. Math. France, 51, 1923. https://doi.org/10.24033/BSMF.1031
    [14] A. Fomenko, D. Fuchs, Homotopical Topology, Graduate Texts in Math., 273, Springer, New York, 2016. https://doi.org/10.1007/978-3-319-23488-5
    [15] A. Gołȩbiewska, E. Pérez-Chavela, S. Rybicki, A. Ureña, Bifurcation of closed orbits from equilibria of Newtonian systems with Coriolis forces, J. Differ. Equations, 338 (2022), 441–473. https://doi.org/10.1016/j.jde.2022.08.004 doi: 10.1016/j.jde.2022.08.004
    [16] M. Hirsch, C. Pugh, M. Shub, Invariant manifolds, Lect. Notes Math. 583, Springer, New York, 1977. https://doi.org/10.1007/BFb0092042
    [17] Yu. Ilyashenko, S. Yakovenko, Lectures on Analytic Differential Equations, Graduate Studies in Math. 86, Amer. Math. Soc., Providence, 2008. https://doi.org/10.1090/gsm/086
    [18] L.G. Khazin, E.E. Shnol, Stability of Critical Equilibrium States, Nonlinear Science: Theory and Applications, Manchester Un-ty Press, Manchester, 1991.
    [19] E. Leandro, On the central configurations of the planar restricted four-body problem, J. Differ. Equations, 226 (2006), 323–351. https://doi.org/10.1006/j.jde.2005.10.015 doi: 10.1006/j.jde.2005.10.015
    [20] A. Ligȩza, H. Żołądek, Qualitative analysis of some libration points in the restricted four-body problem, Rus. J. Nonlin. Dyn., 17 (2021), 369–390. https://doi.org/10.20537/nd210402 doi: 10.20537/nd210402
    [21] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis Group, London, 1992. https://doi.org/10.1115/1.2901415
    [22] J. Mawhin, J. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989. https://doi.org/10.1007/971-1-4757-2061-7
    [23] J. Moser, Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 724–747. https://doi.org/10.1016/s0304-0208(08)71098-3
    [24] R. Moussu, Une démonstration géometrique d'un théorème de Lyapunov–Poincaré, in: Bifurcation, Ergodic Theory and Applications (Dijon, 1981), Asterisque (1982), 98–99.
    [25] E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Lyapunov center theorem, Calculus Variations PDEs, 56 (2017), art. 26. https://doi.org/10.1007/s00526-017-1120-1 doi: 10.1007/s00526-017-1120-1
    [26] E. Pérez-Chavela, S. Rybicki, D. Strzelecki, Symmetric Lyapunov center theorem for minimal orbit, J. Differential Equations, 265 (2018), 752–778. https://doi.org/10.1016/j.jde.2018.03.009 doi: 10.1016/j.jde.2018.03.009
    [27] H. Poincaré, Mémoire sur les Courbes Définies par une Équation Différentielle, in: Œuvres de Henri Poincaré, 1, Gauthier–Villars, Paris, 1951.
    [28] D. S. Schmidt, Periodic solutions near a resonant equilibrium of a Hamiltonian system, Celestial Mech. 9 (1974) 81–103. https://doi.org/10.1007/BF01236166
    [29] C. L. Siegel, Vorlesungen über Himmelsmechanik, Springer, Berlin, 1956. https://doi.org/10.1007/978-3-642-94671-4
    [30] E. Stróżyna, H. Żołądek, Analytic properties of the complete normal form for the Bogdanov–Takens singularity, Nonlinearity, 34 (2021), 3046–3082. https://doi.org/10.1088/1361-6544/abe51d doi: 10.1088/1361-6544/abe51d
    [31] D. Strzelecki, Periodic solutions of symmetric Hamiltonian systems, Arch. Rational Mech. Anal. 237 (2020), 921–950. https://doi.org/10.1007/s00205-020-01522-6
    [32] A. Szulkin, Bifurcation of strongly indefinite functionals and a Liapunov type theorem for Hamiltonian systems, Differential Integral Equations, 7 (1994), 217–234. https://doi.org/10.57262/die/1369926976 doi: 10.57262/die/1369926976
    [33] J. C. van der Meer, Bifurcation at non-semisimple 1: -1 resonance, J. Appl. Math. Phys. 37 (1986), 425–437. https://doi.org/10.1007/BF00946761
    [34] A. van Straten, A note on the number of periodic orbits near a resonant equilibrium point, Nonlinearity, 2 (1989), 445–458. https://doi.org/10.1007/BF02570469 doi: 10.1007/BF02570469
    [35] A. Weinstein, Normal modes for nonlinear Hamiltonian systems, Invent. Math. 20 (1973), 47–57. https://doi.org/10.1007/BF01405263
    [36] A. Weinstein, Symplectic V–manifolds, periodic orbits of Hamiltonian systems and the volume of some Riemannian manifolds, Comm. Pure Appl. Math. 30 (1977), 265–271. https://doi.org/10.1002/cpa.3160300207
    [37] H. Żołądek, The Monodromy Group, Monografie Matematyczne, 67 Birkhäuser, Basel, 2006. https://doi.org/10.1007/3-7643-7536-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(925) PDF downloads(71) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog