Research article

Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials

  • Received: 23 March 2023 Revised: 24 April 2023 Accepted: 27 April 2023 Published: 05 May 2023
  • 35K58, 35K65

  • In this article, we investigate the initial-boundary value problem for a class of finitely degenerate semilinear parabolic equations with singular potential term. By applying the Galerkin method and Banach fixed theorem we establish the local existence and uniqueness of the weak solution. On the other hand, by constructing a family of potential wells, we prove the global existence, the decay estimate and the finite time blow-up of solutions with subcritical or critical initial energy.

    Citation: Huiyang Xu. Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials[J]. Communications in Analysis and Mechanics, 2023, 15(2): 132-161. doi: 10.3934/cam.2023008

    Related Papers:

  • In this article, we investigate the initial-boundary value problem for a class of finitely degenerate semilinear parabolic equations with singular potential term. By applying the Galerkin method and Banach fixed theorem we establish the local existence and uniqueness of the weak solution. On the other hand, by constructing a family of potential wells, we prove the global existence, the decay estimate and the finite time blow-up of solutions with subcritical or critical initial energy.



    加载中


    [1] M. Alimohammady, M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration, J. Funct. Anal., 265 (2013), 2331–2356. https://doi.org/10.1016/j.jfa.2013.07.013 doi: 10.1016/j.jfa.2013.07.013
    [2] P. Baras, J. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121–139. https://doi.org/10.1090/S0002-9947-1984-0742415-3 doi: 10.1090/S0002-9947-1984-0742415-3
    [3] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19 (1969), 277–304. https://doi.org/10.5802/aif.319 doi: 10.5802/aif.319
    [4] M. Bramanti, An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Springer, 2014. https://doi.org/10.1007/978-3-319-02087-7
    [5] X. Cabré, Y. Martel, Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), 973–978. https://doi.org/10.1016/S0764-4442(00)88588-2 doi: 10.1016/S0764-4442(00)88588-2
    [6] L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differ. Equ., 18 (1993), 1765–1794. https://doi.org/10.1080/03605309308820992 doi: 10.1080/03605309308820992
    [7] H. Chen, N. Liu, Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials, Discrete Contin. Dyn. Syst., 36 (2016), 661–682. https://doi.org/10.3934/dcds.2016.36.661 doi: 10.3934/dcds.2016.36.661
    [8] H. Chen, P. Luo, Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators, Calc. Var. Partial Differ. Equ., 54 (2015), 2831–2852. https://doi.org/10.1007/s00526-015-0885-3 doi: 10.1007/s00526-015-0885-3
    [9] H. Chen, H. Chen, X. Yuan, Existence and multiplicity of solutions to Dirichlet problem for semilinear subelliptic equation with a free perturbation, J. Differential Equations, 341 (2022), 504–537. https://doi.org/10.1016/j.jde.2022.09.021 doi: 10.1016/j.jde.2022.09.021
    [10] L. D'Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV (2005), 451–486. https://doi.org/10.2422/2036-2145.2005.3.04 doi: 10.2422/2036-2145.2005.3.04
    [11] L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, 2015.
    [12] F. Gazzola, T. Weth, Finite time blow up and global solutions for semilinear parabolic equations with initial data at high energy level, Differ. Integr. Equations, 18 (2005), 961–990. https://doi.org/10.57262/die/1356060117 doi: 10.57262/die/1356060117
    [13] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/ 10.1007/BF02392081 doi: 10.1007/BF02392081
    [14] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J., 53 (1986), 503–523. https://doi.org/10.1215/S0012-7094-86-05329-9 doi: 10.1215/S0012-7094-86-05329-9
    [15] D. Jerison, A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J., 35 (1986), 835–854. https://doi.org/10.1512/iumj.1986.35.35043 doi: 10.1512/iumj.1986.35.35043
    [16] J. Jost, C. J. Xu, Subelliptic harmonic maps, Trans. Amer. Math. Soc., 350 (1998), 4633–4649. https://doi.org/10.1090/S0002-9947-98-01992-8 doi: 10.1090/S0002-9947-98-01992-8
    [17] J. J. Kohn, Subellipticity of the $\bar{\partial}$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math., 142 (1979), 79–122. https://doi.org/10.1007/BF02395058 doi: 10.1007/BF02395058
    [18] V. Komornik, Exact controllability and stabilization: the multiplier method, Siam Review 02, 1994.
    [19] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957) 155–158. https://doi.org/10.2307/1970121
    [20] W. Lian, V. Rădulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039
    [21] W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047
    [22] W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [23] Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equations, 192 (2003), 155–169. https://doi.org/10.1016/S0022-0396(02)00020-7 doi: 10.1016/S0022-0396(02)00020-7
    [24] Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011
    [25] Y. Luo, R. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var., 61 (2022), 210. https://doi.org/10.1007/s00526-022-02316-2 doi: 10.1007/s00526-022-02316-2
    [26] G. Métivier, Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Comm. Partial Differ. Equ., 1 (1976), 467–519. https://doi.org/10.1080/03605307608820018 doi: 10.1080/03605307608820018
    [27] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, 91, 2002. http://dx.doi.org/10.1090/surv/091
    [28] L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
    [29] L. P. Rothschild, E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247–320. https://doi.org/10.1007/bf02392419 doi: 10.1007/bf02392419
    [30] Z. Schuss, Theory and Application of Stochastic Differential Equations, Wiley, New York, 1980. https://doi.org/10.1063/1.2914346
    [31] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2$^{nd}$ edition, Springer, New York, 1997. https://doi.org/10.1007/978-1-4612-0645-3
    [32] X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141
    [33] C. J. Xu, Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmander's condition, Chinese J. Contemp. Math., 15 (1994), 183–192.
    [34] R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Q. Appl. Math., 68 (2010), 459–468. https://doi.org/10.1090/S0033-569X-2010-01197-0 doi: 10.1090/S0033-569X-2010-01197-0
    [35] R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
    [36] R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [37] R. Xu, Y. Niu, Addendum to "Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations" [J. Funct. Anal. 264 (12) (2013) 2732-2763], J. Funct. Anal., 270 (2016), 4039–4041. https://doi.org/10.1016/j.jfa.2016.02.026 doi: 10.1016/j.jfa.2016.02.026
    [38] C. Yang, V. Rădulescu, R. Xu, M. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear Stud., 22 (2022), 436–468. https://doi.org/10.1515/ans-2022-0024 doi: 10.1515/ans-2022-0024
    [39] P. L. Yung, A sharp subelliptic Sobolev embedding theorem with weights, Bull. London Math. Soc., 47 (2015), 396–406. https://doi.org/10.1112/blms/bdv010 doi: 10.1112/blms/bdv010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1901) PDF downloads(194) Cited by(19)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog