The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.
Citation: Cheng Yang. On the Hamiltonian and geometric structure of Langmuir circulation[J]. Communications in Analysis and Mechanics, 2023, 15(2): 58-69. doi: 10.3934/cam.2023004
The Craik-Leibovich equation (CL) serves as the theoretical model for Langmuir circulation. We show that the CL equation can be reduced to the dual space of a certain Lie algebra central extension. On this space, the CL equation can be rewritten as a Hamiltonian equation corresponding to the kinetic energy. Additionally, we provide an explanation of the appearance of this central extension structure through an averaging theory for Langmuir circulation. Lastly, we prove a stability theorem for two-dimensional steady flows of the CL equation. The paper also contains two examples of stable steady CL flows.
[1] | I. Langmuir, Surface Motion of Water Induced by Wind, Science, 87 (1938), 119–123. https://doi.org/10.1126/science.87.2250.119 doi: 10.1126/science.87.2250.119 |
[2] | D. D. Craik, S. Leibovich, A rational model for Langmuir circulations, J. Fluid. Mech., 73 (1976), 401–426. https://doi.org/10.1017/s0022112076001420 doi: 10.1017/s0022112076001420 |
[3] | D. D. Holm, The Ideal Craik-Leibovich Equations, Physica D, 98 (1996), 415–441. https://doi.org/10.1016/0167-2789(96)00105-4 doi: 10.1016/0167-2789(96)00105-4 |
[4] | V. A. Vladimirov, M. R. E. Proctor, D. W. Hughes, Vortex dynamics of oscillating flows, Arnold Math J., 1 (2015), 113–126. https://doi.org/10.1007/s40598-015-0010-x doi: 10.1007/s40598-015-0010-x |
[5] | C. Yang, Multiscale method, Central extensions and a generalized Craik-Leibovich equation, J. Geom. Phys., 116 (2017), 228–243. https://doi.org/10.1016/j.geomphys.2017.02.004 doi: 10.1016/j.geomphys.2017.02.004 |
[6] | V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des uides parfaits, Ann. Inst. Fourier., 16 (1966), 319–361. https://doi.org/10.5802/aif.233 doi: 10.5802/aif.233 |
[7] | V. I. Arnold, B. A. Khesin, Topological methods in hydrodynamics, Springer-Verlag, New York, 1998. https://doi.org/10.1007/b97593 |
[8] | B. A. Khesin, Yu. V. Chekanov, Invariants of the Euler equations for ideal or barotropic hydrodynamics and superconductivity in D dimensions, Physica D, 40 (1989), 119–131. https://doi.org/10.1016/0167-2789(89)90030-4 doi: 10.1016/0167-2789(89)90030-4 |
[9] | C. Roger, Extensions centrales d'algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys., 35 (1995), 225–266. https://doi.org/10.1016/0034-4877(96)89288-3 doi: 10.1016/0034-4877(96)89288-3 |
[10] | C. Vizman, Geodesics on extensions of Lie groups and stability: the superconductivity equation, Phys. Lett. A, 284 (2001), 23–30. https://doi.org/10.1016/s0375-9601(01)00279-1 doi: 10.1016/s0375-9601(01)00279-1 |
[11] | V. Zeitlin, Vorticity and waves: geometry of phase-space and the problem of normal variables, Physics. Letters. A., 164 (1992), 177–183. https://doi.org/10.1016/0375-9601(92)90699-m doi: 10.1016/0375-9601(92)90699-m |
[12] | C. Yang, B. Khesin, Averaging, symplectic reduction, and central extensions, Nonlinearity, 33 (2020), 1342–1365. https://doi.org/10.1088/1361-6544/ab5cdf doi: 10.1088/1361-6544/ab5cdf |
[13] | J. E. Marsden, G. Misiolek, J. Ortega, M. Perlmutter, T. S. Ratiu, Hamiltonian Reduction by Stages, Springer-Verlag, New York, 2007. https://doi.org/10.1007/978-3-540-72470-4 |