The impact of denaturing and stabilizing osmolytes on protein conformational dynamics has been extensively explored due to the significant contribution of protein solvation to the stability, function, malfunction and regulation of globular proteins. We studied the effect of two nonspecific organic molecules, urea, which is a conventional denaturant, and dimethyl sulfoxide (DMSO), which is a multilateral organic solvent, on the stability and conformational dynamics of a non-inhibitory serpin, ovalbumin (OVA). A differential scanning microcalorimetry (DSC) experimental series conducted in the phosphate buffer solutions containing 0–30% of additives revealed the destabilizing impact of both urea and DMSO in a mild acidic media, manifested in the gradual decrease of thermal unfolding enthalpy and transition temperature. These findings differ from the results observed in our study of the mild alkaline DMSO buffered solutions of OVA, where the moderate stabilization of OVA was observed in presence of 5–10% of DMSO. However, the overall OVA interaction patterns with urea and DMSO are consistent with our previous findings on the stability and conformational flexibility of another model globular protein, α-chymotrypsin, in similar medium conditions. The obtained results could be explained by preferential solvation patterns. Positive preferential solvation of protein by urea in urea/water mixtures mainly weakens the hydrophobic interactions of the protein globule and eventually leads to the disruption of the tertiary structure within the whole range of urea concentrations. Alternatively, under certain experimental conditions in DMSO/water mixtures, positive preferential solvation by water molecules can be observed. We assume that the switch to the positive preferential solvation by DMSO, which is shown to have a soft maximum around 20–30% DMSO, could be shifted towards lower additive concentrations due to the intrinsic capability of ovalbumin OVA to convert into a heat-stable, yet flexible set of conformations that have increased the surface hydrophobicity, characteristic to molten-globule-like states.
Citation: Tatyana Tretyakova, Maya Makharadze, Sopio Uchaneishvili, Mikhael Shushanyan, Dimitri Khoshtariya. Exploring the role of preferential solvation in the stability of globular proteins through the study of ovalbumin interaction with organic additives[J]. AIMS Biophysics, 2023, 10(4): 440-452. doi: 10.3934/biophy.2023025
[1] | Amira Bouhali, Walid Ben Aribi, Slimane Ben Miled, Amira Kebir . Impact of immunity loss on the optimal vaccination strategy for an age-structured epidemiological model. Mathematical Biosciences and Engineering, 2024, 21(6): 6372-6392. doi: 10.3934/mbe.2024278 |
[2] | Holly Gaff, Elsa Schaefer . Optimal control applied to vaccination and treatment strategies for various epidemiological models. Mathematical Biosciences and Engineering, 2009, 6(3): 469-492. doi: 10.3934/mbe.2009.6.469 |
[3] | Haoyu Wang, Xihe Qiu, Jinghan Yang, Qiong Li, Xiaoyu Tan, Jingjing Huang . Neural-SEIR: A flexible data-driven framework for precise prediction of epidemic disease. Mathematical Biosciences and Engineering, 2023, 20(9): 16807-16823. doi: 10.3934/mbe.2023749 |
[4] | Markus Thäter, Kurt Chudej, Hans Josef Pesch . Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences and Engineering, 2018, 15(2): 485-505. doi: 10.3934/mbe.2018022 |
[5] | Rongjian Lv, Hua Li, Qiubai Sun, Bowen Li . Model of strategy control for delayed panic spread in emergencies. Mathematical Biosciences and Engineering, 2024, 21(1): 75-95. doi: 10.3934/mbe.2024004 |
[6] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[7] | Jerzy Klamka, Helmut Maurer, Andrzej Swierniak . Local controllability and optimal control for\newline a model of combined anticancer therapy with control delays. Mathematical Biosciences and Engineering, 2017, 14(1): 195-216. doi: 10.3934/mbe.2017013 |
[8] | Bruno Buonomo . A simple analysis of vaccination strategies for rubella. Mathematical Biosciences and Engineering, 2011, 8(3): 677-687. doi: 10.3934/mbe.2011.8.677 |
[9] | M. H. A. Biswas, L. T. Paiva, MdR de Pinho . A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences and Engineering, 2014, 11(4): 761-784. doi: 10.3934/mbe.2014.11.761 |
[10] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
The impact of denaturing and stabilizing osmolytes on protein conformational dynamics has been extensively explored due to the significant contribution of protein solvation to the stability, function, malfunction and regulation of globular proteins. We studied the effect of two nonspecific organic molecules, urea, which is a conventional denaturant, and dimethyl sulfoxide (DMSO), which is a multilateral organic solvent, on the stability and conformational dynamics of a non-inhibitory serpin, ovalbumin (OVA). A differential scanning microcalorimetry (DSC) experimental series conducted in the phosphate buffer solutions containing 0–30% of additives revealed the destabilizing impact of both urea and DMSO in a mild acidic media, manifested in the gradual decrease of thermal unfolding enthalpy and transition temperature. These findings differ from the results observed in our study of the mild alkaline DMSO buffered solutions of OVA, where the moderate stabilization of OVA was observed in presence of 5–10% of DMSO. However, the overall OVA interaction patterns with urea and DMSO are consistent with our previous findings on the stability and conformational flexibility of another model globular protein, α-chymotrypsin, in similar medium conditions. The obtained results could be explained by preferential solvation patterns. Positive preferential solvation of protein by urea in urea/water mixtures mainly weakens the hydrophobic interactions of the protein globule and eventually leads to the disruption of the tertiary structure within the whole range of urea concentrations. Alternatively, under certain experimental conditions in DMSO/water mixtures, positive preferential solvation by water molecules can be observed. We assume that the switch to the positive preferential solvation by DMSO, which is shown to have a soft maximum around 20–30% DMSO, could be shifted towards lower additive concentrations due to the intrinsic capability of ovalbumin OVA to convert into a heat-stable, yet flexible set of conformations that have increased the surface hydrophobicity, characteristic to molten-globule-like states.
differential scanning calorimetry;
ovalbumin;
S-ovalbumin;
dimethyl sulfoxide;
α-chymotrypsin
Since the publication of the seminal paper [11] mathematical compartmental models are widely used to describe infectious diseases dymanics in large populations (see, for example [9], [4], [2] and [8]). It is well accepted that once an infected individual comes into contact with an unaffected population, the disease will spread by contact with the infectious individuals. Compartmental models divide the population into compartments characterizing the spread of the diseases and letters are used to denote the number of individuals in each compartment. Usually, the size of the population to be studied is
The basic reproduction number,
Many papers on optimal control applied to epidemiology propose
In this paper we focus on optimal control problems to control, via vaccination, the spread of a disease described by a SEIR model. We follow closely the approach in [16]: we consider
The normalized SEIR model differs from the usual SEIR model since the variables are fractions of the whole population instead of the number of individuals in each compartment. The theoretical and numerical treatment involving the latter model is usually done as if the variables are continuous and not integers; treating such variables as integers would demand the use of integer programming what is known to be very heavy computationally. When we turn to normalized models the variables are, by nature, continuous. In the literature, normalized models are common when the total population is assumed to remain constant during the time frame under study. This is not our case; here we normalize a SEIR model that incorporates exponential natural birth and death, as well as disease-caused death (similarly to what is done in [14]). As far as optimal control is concerned, normalizing such model brings out some new issues related to the choice of costs and the introduction of non standard constraints, questions we discuss here when comparing optimal control for normalized and not normalized SEIR models.
Herein, we refer to the SEIR model, where the variables
We emphasize that we do not concentrate on any particular disease. Rather, our aim is to illustrate how previously proposed optimal control formulations can be handled by this new model, when different scenarios are considered. Taking into account that the set of parameters for the population in [16], based on [17], are not to be found in today's world, we use different population's parameters closed related to some European countries.
Like other models in epidemiology, SEIR models represent only a rough approximation of reality. However, they provide new insights into the spreading of diseases and, when optimal control is applied, new insight on different vaccination policies.
This paper is organized in the following way. In Section 2 we introduce an optimal control problem with
The SEIR model is a compartmental model well accepted as modelling some infectious diseases. At each instant
Optimal control techniques for SEIR models allow the study of different vaccines policies; different policies are confronted in [17] and [1] where the minimizing cost is
˙S(t)=bN(t)−dS(t)−cS(t)I(t)N(t)−u(t)S(t),S(0)=S0, | (1) |
˙E(t)=cS(t)I(t)N(t)−(f+d)E(t),E(0)=E0, | (2) |
˙I(t)=fE(t)−(g+a+d)I(t),I(0)=I0, | (3) |
˙N(t)=(b−d)N(t)−aI(t),N(0)=N0, | (4) |
where
For some
0≤u(t)≤ˉua.e.t∈[0,T], | (5) |
where
˙R(t)=gI(t)−dR(t)+u(t)S(t),R(0)=R0. | (6) |
Here, the aim of applying optimal control to SEIR models is to control the spreading of the disease with some minimum financial cost. The cost should then be a weighted sum of the society financial costs of having, at each time,
JC(X,u)=∫T0(AI(t)+Bu(t)) dt, | (7) |
where
Throughout this paper we refer to the optimal control problem of minimizing
(P){Minimize∫T0(AI(t)+Bu(t)) dtsubject to˙S(t)=bN(t)−dS(t)−cS(t)I(t)N(t)−u(t)S(t),S(0)=S0,˙E(t)=cS(t)I(t)N(t)−(f+d)E(t),E(0)=E0,˙I(t)=fE(t)−(g+a+d)I(t),I(0)=I0,˙N(t)=(b−d)N(t)−aI(t),N(0)=N0,u(t)∈[0,ˉu] for a. e.t∈[0,T], with ˉu∈]0,1]. |
Next, we associate
s(t)=S(t)N(t),e(t)=E(t)N(t),i(t)=I(t)N(t),r(t)=R(t)N(t), | (8) |
we have
s(t)+e(t)+i(t)+r(t)=1 for all t. | (9) |
Notice that
˙s(t)=b−cs(t)i(t)−bs(t)+ai(t)s(t)−u(t)s(t), | (10) |
˙e(t)=cs(t)i(t)−(f+b)e(t)+ai(t)e(t), | (11) |
˙i(t)=fe(t)−(g+a+b)i(t)+ai2(t), | (12) |
˙r(t)=gi(t)−rb(t)+ai(t)r(t)+u(t)s(t). | (13) |
Remarkably, the dead rate parameters do not appear in this model (a feature we discuss in Remark 1 below). It is a simple matter to see that due to (9) we can discard equation (13), allowing us to reduce the number of differential equations from the normalized SEIR model (10)-(13).
Now we are faced with the choice of the cost for the normalized model. Taking into account that the main aim is to control or to eliminate the disease from the population under study, different costs is may be considered, reflecting different concerns.
The choice of the cost for
An almost straightforward translation of this reasoning to our normalized model yields
We postpone this discussion of the introduction of different costs to future research and we proceed now with the cost
(Pn){Minimize∫T0(ρi(t)+u(t)) dtsubject to˙s(t)=b−cs(t)i(t)−bs(t)+ai(t)s(t)−u(t)s(t),s(0)=s0,˙e(t)=cs(t)i(t)−(f+b)e(t)+ai(t)e(t),e(0)=e0,˙i(t)=fe(t)−(g+a+b)i(t)+ai2(t),i(0)=i0,u(t)∈[0,ˉu] for a. e.t∈[0,T], with ˉu∈]0,1]. |
Note that the dynamics is of the form
Remark 1. A word of caution regarding the way the system (10)-(13) is viewed. We cannot interpret the dynamics between these new compartments in the same way as with the classical model. Indeed, in equation (10) the term
We will discuss pros and cons of
Optimal control problems can be solved numerically by direct or indirect methods. Here, we opt to use the direct method (for a description these two methods see, for example, [19]): first the problem is discretized and the subsequent optimization problem is then solved using software packages with large scale nonlinear continuous optimization solvers. In this work all the simulations were made with the Applied Modelling Programming Language (AMPL), developed by [7], and interfaced to the Interior-Point optimization solver IPOPT, developed by [21]. Alternatively, the optimization solver WORHP (see [3]) can also be interfaced with AMPL. We refer the reader to [16] and references within for more information on software for optimal control problems.
The application of the Maximum Principle to problems in the form of
In all the computations we consider the time horizon to be 20 years: thus
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
The problem
Although the two problem
Clearly, the reason why
When considering problem
u(t)S(t)≤V0, | (14) |
can be mathematically translated to normalized models but they loose their meaning. However, this drawback may be overcome by considering
We now focus on the Maximum Principle for the problem
H(x,p,u)=pf(x)+pg(x)u−λ(ρi+u), |
for appropriated
(ⅰ)
(ⅱ)
(ⅲ)
(ⅳ)
Since
It is a simple matter to see that condition (ⅲ) is equivalent to
ϕ(t)u∗(t)=maxu{ϕ(t)u(t):0≤u≤ˉu}. | (15) |
It follows that
u∗(t)={ˉu, if ϕ(t)>0,0, if ϕ(t)<0,singular, if ϕ(t)=0. | (16) |
In terms of the data of
−˙ps(t)=(ai(t)−ci(t)−b−u(t))ps(t)+ci(t)pe(t), | (17) |
−˙pe(t)=(ai(t)−b−f)pe(t)+fpi(t), | (18) |
−˙pi(t)=(as(t)−cs(t))ps(t)+(cs(t)+ae(t))pe(t)+(2ai(t)−a−b−g)pi(t)−ρ. | (19) |
Also, we have
ϕ(t)=−1−ps(t)s(t). | (20) |
Since our computations show that a singular arc appear, let us assume that
1Since the initial condition belong to the interior of
R:={(s,e,i)∈R3: s≥0, e≥0, i≥0} |
and so we deduce that
ϕ(t)=0 implies that ps(t)=−1s(t)<0. |
In the interior of the singular interval we have
dϕdt=cs(t)i(t)pe(t)−bps(t)=0 |
implies that that
d2ϕdt=aci(t)2pe(t)s(t)−aci(t)pe(t)s(t)−bci(t)pe(t)s(t)+cfe(t)pe(t)s(t)−cgi(t)pe(t)s(t)−c2i(t)2pe(t)s(t)−ci(t)pe(t)s(t)u(t)+2bci(t)pe(t)+cfi(t)pe(t)s(t)−cfi(t)s(t)pi(t)+abi(t)ps(t)−bci(t)ps(t)−b2ps(t)−bps(t)u(t), | (21) |
depends on the control variable
ddu(d2ϕdt)=−ci(t)pe(t)s(t)−bps(t)>0. |
Thus the strict Generalized Legendre-Clebsch Condition (GLC) holds and we can solve
using(x,p)=c(−c+a)s(t)i(t)2pe(t)ci(t)pe(t)s(t)+bps(t)+cefs(t)pe(t)−b2ps(t)ci(t)pe(t)s(t)+bps(t)+((((−a−b+f−g)s(t)+2b)pe(t)−fs(t)pi(t)−bps(t))c+abps(t))i(t)ci(t)pe(t)s(t)+bps(t) | (22) |
It is important to observe that the above expression for singular controls depends on the multipliers. Since we do not establish that the multipliers are unique, we can only expect to use (22) to validate numerical findings but not to prove to optimality. In fact, to prove optimality of computed solution we need to check numerically sufficient conditions. Unfortunately, there are no numerically verifiable sufficient conditions for problems with singular arcs.
We now present and discuss the results of our simulations for
● Case 1:
● Case 2:
● Case 3:
In the first two cases the computed optimal control exhibits a bang-singular-bang structure while in the last one the optimal control is bang-bang. For all the three cases we present graphs with the computed controls and trajectories. As in [16] and to keep the exposition short, we do not present the graphs of the multipliers but we give their computed initial values, and we also present the final states, the costs and the switching times
Case 1. Taking
Numerical results for Case 1:
s(T)=0.095341,e(T)=0.00051104,i(T)=0.0020380,ps(0)=−126.5,pe(0)=−2253,pi(0)=−3219. |
Case 2. The results of the simulations are shown in figures 6 and 7. In figure 6 the optimal control,
Numerical results for case 2:
s(T)=0.16598,e(T)=0.0033060,i(T)=0.0079433,ps(0)=−377.0,pe(0)=−5137,pi(0)=−7081. |
When we go from case 1 to case 2, the optimal control goes from singular to bang-bang. This is because when we decrease the value of
Case 3. While keeping
Numerical results for case 3:
s(T)=0.071623,e(T)=0.0031999,i(T)=0.015275,ps(0)=−1025,pe(0)=−4692,pi(0)=−6872. |
If the control is bang-bang as in case 2 and 3 second order sufficient conditions may be checked numerically as described in [15] and [16]. Here we refrain from engaging in such discussion to keep the exposition short. Here we compute numerically the switching times using the so called induced optimization problem as in [15]. Recall that the switching times are the points
Implementing the induced optimization problem with AMPL for case 2, with
For case 3, with
We now turn to case 1 where the computed control
We studied the optimal control of an epidemiological normalized SEIR model using a
Moreover, we confronted this problem with the one previously studied in [16] where the so called classical SEIR model is used. The normalized model may cover in one single problem populations of different size and it is defined with what may be seen as a more realistic cost. Because of the use of normalized model, the solution of
The authors would like to thank Prof. Helmut Maurer for numerous and enlightening discussions on this topic as well as his help in writing up AMPL codes for the problems reported here. Thanks are due to the anonymous referees whose many comments and suggestions greatly improved this paper.
The financial support of FEDER funds through COMPETE and Portuguese funds through the Portuguese Foundation for Science and Technology (FCT), within the FCT project PTDC/EEI-AUT/1450/2012—FCOMP-01-0124-FEDER-028894, PTDC/EEI-AUT/2933/2014, TOCCATTA -funded by FEDER funds through COMPETE2020 -POCI and FCT as well as POCI-01-0145-FEDER-006933 -SYSTEC -funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT -Fundação para a Ciência e a Tecnologia, are gratefully acknowledged.
[1] |
Onuchic JN, Nymeyer H, García AE, et al. (2000) The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv Protein Chem 53: 87-152. https://doi.org/10.1016/S0065-3233(00)53003-4 ![]() |
[2] |
Whitford PC, Onuchic JN (2015) What protein folding teaches us about biological function and molecular machines. Curr Opin Struct Biol 30: 57-62. https://doi.org/10.1016/j.sbi.2014.12.003 ![]() |
[3] |
Schug A, Onuchic JN (2010) From protein folding to protein function and biomolecular binding by energy landscape theory. Curr Opin Pharmacol 10: 709-714. https://doi.org/10.1016/j.sbi.2014.12.003 ![]() |
[4] |
Warshel A, Parson W (2001) Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys 34: 563-679. https://doi.org/10.1017/S0033583501003730 ![]() |
[5] |
Stein PE, Leslie AGW, Finch JT, et al. (1991) Crystal structure of uncleaved ovalbumin at l.95 a resolution. J Mol Biol 221: 941-959. https://doi.org/10.1016/0022-2836(91)80185-W ![]() |
[6] |
Stein PE, Huntington JA (2001) Structure and properties of ovalbumin. J Chromat B 756: 189-198. https://doi.org/10.1016/S0378-4347(01)00108-6 ![]() |
[7] |
Law RH, Zhang Q, McGowan S, et al. (2006) An overview of the serpin superfamily. Genome Biol 7: 216. https://doi.org/10.1186/gb-2006-7-5-216 ![]() |
[8] |
Carrell RW, Read RJ (2017) How serpins transport hormones and regulate their release. Semin Cell Dev Biol 62: 133-141. https://doi.org/10.1016/j.semcdb.2016.12.007 ![]() |
[9] |
Bose D, Chakrabarti A (2017) Substrate specificity in the context of molecular chaperones. IUBMB Life 69: 647-659. https://doi.org/10.1002/iub.1656 ![]() |
[10] |
Shinohara H, Iwasaki T, Miyazaki Y, et al. (2005) Thermostabilized ovalbumin that occurs naturally during development accumulates in embryonic tissues. Biochim Biophys Acta 1723: 106-113. https://doi.org/10.1016/j.bbagen.2005.02.016 ![]() |
[11] |
Da Silva M, Beauclercq S, Harichaux G, et al. (2015) The family secrets of avian egg-specific ovalbumin and its related proteins Y and X. Biol Reprod 93: 71. https://doi.org/10.1095/biolreprod.115.130856 ![]() |
[12] |
Huntington JA, Patston PA, Gettins PG (1995) S-ovalbumin, an ovalbumin conformer with properties analogous to those of loop-inserted serpins. Protein Sci 4: 613-621. https://doi.org/10.1002/pro.5560040403 ![]() |
[13] |
Castellano AC, Barteri M, Bianconi A, et al. (1996) Conformational changes involved in the switch from ovalbumin to S-ovalbumin. Z Naturforsch C J Biosci 51: 379-385. https://doi.org/10.1515/znc-1996-5-615 ![]() |
[14] |
Paolinelli C, Barteri M, Boffi F, et al. (1997) Structural differences of ovalbumin and S-ovalbumin revealed by denaturing conditions. Z Naturforsch C J Biosci 52: 645-653. https://doi.org/10.1515/znc-1997-9-1012 ![]() |
[15] |
Hammershøj M, Larsen LB, Andersen A B, et al. (2002) Storage of shell eggs influences the albumen gelling properties. LWT-Food Sci Technol 35: 62-69. https://doi.org/10.1006/fstl.2001.0811 ![]() |
[16] | Nakamura R, Ishimaru M (1981) Changes in the shape and surface hydrophobicity of ovalbumin during its transformation to S-ovalbumin. Agr Biol Chem 45: 2775-2780. https://doi.org/10.1080/00021369.1981.10864966 |
[17] |
Sugimoto Y, Sanuki S, Ohsako S, et al. (1999) Ovalbumin in developing chicken eggs migrates from egg white to embryonic organs while changing its conformation and thermal stability. J Biol Chem 274: 11030-11037. https://doi.org/10.1074/jbc.274.16.11030 ![]() |
[18] |
Tufail S, Sherwani MA, Shoaib S, et al. (2018) Ovalbumin self-assembles into amyloid nanosheets that elicit immune responses and facilitate sustained drug release. J Biol Chem 293: 11310-11324. https://doi.org/10.1074/jbc.RA118.002550 ![]() |
[19] | Khan MS, Singh P, Azhar A, et al. (2011) Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids 2011: 606797. https://doi.org/10.4061/2011/606797 |
[20] |
Bhattacharya M, Mukhopadhyay S (2012) Structural and dynamical insights into the molten-globule form of ovalbumin. J Phys Chem B 116: 520-531. https://doi.org/10.1021/jp208416d ![]() |
[21] |
Huntington JA (2011) Serpin structure, function and dysfunction. J Thromb Haemost 9: 26-34. https://doi.org/10.1111/j.1538-7836.2011.04360.x ![]() |
[22] |
Akazawa T, Ogawa M, Hayakawa S, et al. (2018) Structural change of ovalbumin-related protein X by alkali treatment. Poult Sci 97: 1730-1737. https://doi.org/10.3382/ps/pey024 ![]() |
[23] |
Tanaka N, Morimoto Y, Noguchi Y, et al. (2011) The mechanism of fibril formation of a non-inhibitory serpin ovalbumin revealed by the identification of amyloidogenic core regions. J Biol Chem 286: 5884-5894. https://doi.org/10.1074/jbc.M110.176396 ![]() |
[24] |
Jin H, Li P, Jin Y, et al. (2021) Effect of sodium tripolyphosphate on the interaction and aggregation behavior of ovalbumin-lysozyme complex. Food Chem 352: 129457. https://doi.org/10.1016/j.foodchem.2021.129457 ![]() |
[25] |
Zhou J, Geng S, Wang Q, et al. (2020) Ovalbumin-modified nanoparticles increase the tumor accumulation by a tumor microenvironment-mediated “giant”. J Mater Chem B 8: 7528-7538. https://doi.org/10.1039/D0TB00542H ![]() |
[26] |
Kavitha K, Palaniappan L (2022) FTIR study of synthesized ovalbumin nanoparticles. Anal Biochem 636: 114456. https://doi.org/10.1016/j.ab.2021.114456 ![]() |
[27] |
Magsumov T, Fatkhutdinova A, Mukhametzyanov T, et al. (2019) The effect of dimethyl sulfoxide on the lysozyme unfolding kinetics, thermodynamics, and mechanism. Biomolecules 9: 547. https://doi.org/10.3390/biom9100547 ![]() |
[28] |
Karim M, Boikess RS, Schwartz RA, et al. (2023) Dimethyl sulfoxide (DMSO): a solvent that may solve selected cutaneous clinical challenges. Arch Dermatol Res 315: 1465-1472. https://doi.org/10.1007/s00403-022-02494-1 ![]() |
[29] |
Oh KI, Baiz CR (2018) Crowding stabilizes DMSO-water hydrogen-bonding interactions. J Phys Chem B 122: 5984-5990. https://doi.org/10.1021/acs.jpcb.8b02739 ![]() |
[30] |
Nandi S, Parui S, Halder R, et al. (2018) Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell. Biophys Rev 10: 757-768. https://doi.org/10.1007/s12551-017-0331-1 ![]() |
[31] |
Krylov AV, Pfeil W, Lisdat F (2004) Denaturation and renaturation of cytochrome c immobilized on gold electrodes in DMSO-containing buffers. J Electroanal Chem 569: 225-231. https://doi.org/10.1016/j.jelechem.2004.03.005 ![]() |
[32] |
Kim SH, Yan YB, Zhou HM (2006) Role of osmolytes as chemical chaperones during the refolding of aminoacylase. Biochem Cell Biol 84: 30-38. https://doi.org/10.1139/o05-148 ![]() |
[33] |
Ou WB, Park YD, Zhou HM (2002) Effect of osmolytes as folding aids on creatine kinase refolding pathway. Int J Biochem Cell Biol 34: 136-147. https://doi.org/10.1016/S1357-2725(01)00113-3 ![]() |
[34] |
Kumar A, Darreh-Shori T (2017) DMSO: A mixed-competitive inhibitor of human acetylcholinesterase. ACS Chem Neurosci 8: 2618-2625. https://doi.org/10.1021/acschemneuro.7b00344 ![]() |
[35] |
Murray KA, Gibson MI (2022) Chemical approaches to cryopreservation. Nat Rev Chem 6: 579-593. https://doi.org/10.1038/s41570-022-00407-4 ![]() |
[36] |
Almarsson O, Klibanov AM (1996) Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents. Biotechnol Bioeng 49: 87-92. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<87::AID-BIT11>3.0.CO;2-8 ![]() |
[37] |
Privalov PL, Gill SG (1988) Stability of protein structure and hydrophobic interaction. Adv Protein Chem 39: 191-234. https://doi.org/10.1016/S0065-3233(08)60377-0 ![]() |
[38] |
Kim PS, Baldwin RL (1990) Intermediates in the folding reactions of small proteins. Annu Rev Biochem 59: 631-660. https://doi.org/10.1146/annurev.bi.59.070190.003215 ![]() |
[39] |
Khoshtariya D, Shushanian M, Sujashvili R, et al. (2003) Enzymatic activity of α-chymotrypsin in the urea-induced molten-globule-like state: a combined kinetic/thermodynamic study. J Biol Phys Chem 3: 2-10. ![]() |
[40] |
Yamasaki M, Takahashi N, Hirose M (2003) Crystal structure of S-ovalbumin as a non-loop-inserted thermostabilized serpin form. J Biol Chem 278: 35524-35530. https://doi.org/10.1074/jbc.M305926200 ![]() |
[41] |
Timasheff SN, Xie G (2003) Preferential interactions of urea with lysozyme and their linkage to protein denaturation. Biophys Chem 105: 421-448. https://doi.org/10.1016/S0301-4622(03)00106-6 ![]() |
[42] |
Nnyigide OS, Lee SG, Hyun K (2018) Exploring the differences and similarities between urea and thermally driven denaturation of bovine serum albumin: intermolecular forces and solvation preferences. J Mol Model 24: 75. https://doi.org/10.1007/s00894-018-3622-y ![]() |
[43] |
Tretyakova T, Shushanyan M, Partskhaladze T, et al. (2013) Simplicity within the complexity: Bilateral impact of DMSO on the functional and unfolding patterns of α-chymotrypsin. Biophys Chem 175–176: 17-27. https://doi.org/10.1016/j.bpc.2013.02.006 ![]() |
[44] | Tretyakova T, Makharadze M, Uchaneishvili S, et al. Impact of small organic molecules on the stability and conformational flexibility of globular proteins, Proceedings of International Conference on Life Sciences, Engineering and Technolog (2020). |
[45] |
Roy S, Jana B, Bagchi B (2012) Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme. J Chem Phys 136: 115103. https://doi.org/10.1063/1.3694268 ![]() |
[46] |
Arakawa T, Kita Y, Timasheff SN (2007) Protein precipitation and denaturation by dimethyl sulfoxide. Biophys Chem 131: 62-70. https://doi.org/10.1016/j.bpc.2007.09.004 ![]() |
[47] |
Auton A, Bolen DW, Rösgen J (2008) Structural thermodynamics of protein preferential solvation: Osmolyte solvation of proteins, aminoacids, and peptides. Proteins 73: 802-813. https://doi.org/10.1002/prot.22103 ![]() |
[48] |
Jaganade T, Chattopadhyay A, Raghunathan S, et al. (2020) Urea-water solvation of protein side chain models. J Mol Liq 311: 113191. https://doi.org/10.1016/j.molliq.2020.113191 ![]() |
[49] |
Batista ANL, Batista JM, Bolzani VS, et al. (2013) Selective DMSO-induced conformational changes in proteins from Raman optical activity. Phys Chem Chem Phys 15: 20147-20152. https://doi.org/10.1039/C3CP53525H ![]() |
[50] |
Dilip HN, Chakraborty D (2019) Effect of cosolvents in the preferential binding affinity of water in aqueous solutions of amino acids and amides. J Mol Liq 300: 112375. https://doi.org/10.1016/j.molliq.2019.112375 ![]() |
[51] |
Godlewska J, Cieśla B, Wawer J, et al. (2022) DMSO and TMAO-differences in interactions in aqueous solutions of the K-peptide. Int J Mol Sci 23: 1872. https://doi.org/10.3390/ijms23031872 ![]() |
1. | Asaf Khan, Gul Zaman, Optimal control strategy of SEIR endemic model with continuous age-structure in the exposed and infectious classes, 2018, 39, 01432087, 1716, 10.1002/oca.2437 | |
2. | Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1 | |
3. | Urszula Ledzewicz, Mahya Aghaee, Heinz Schattler, 2016, Optimal control for a SIR epidemiological model with time-varying populations, 978-1-5090-0755-4, 1268, 10.1109/CCA.2016.7587981 | |
4. | Maria do Rosário de Pinho, Filipa Nunes Nogueira, Costs analysis for the application of optimal control to SEIR normalized models, 2018, 51, 24058963, 122, 10.1016/j.ifacol.2018.11.656 | |
5. | Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani, Optimal control of normalized SIMR models with vaccination and treatment, 2018, 23, 1553-524X, 79, 10.3934/dcdsb.2018006 | |
6. | Y.M. Rangkuti, A. Landong, Control optimal analysis of SEIR model of covid 19 spread in Indonesia, 2022, 2193, 1742-6588, 012091, 10.1088/1742-6596/2193/1/012091 | |
7. | Hassan Tahir, Asaf Khan, Anwarud Din, Amir Khan, Gul Zaman, Optimal control strategy for an age-structured SIR endemic model, 2021, 14, 1937-1179, 2535, 10.3934/dcdss.2021054 | |
8. | Asaf Khan, Gul Zaman, Optimal control strategies for an age‐structured SEIR epidemic model, 2022, 45, 0170-4214, 8701, 10.1002/mma.7823 | |
9. | Saroj K Biswas, Nasir U Ahmed, Mathematical modeling and optimal intervention of COVID‐19 outbreak, 2021, 9, 2095-4689, 84, 10.15302/J-QB-020-0229 | |
10. | Haojie Hou, Youguo Wang, Qiqing Zhai, Xianli Sun, Synergistic control of negative information diffusion in improved semi-randomized epidemic networks, 2024, 0924-090X, 10.1007/s11071-024-10817-2 |
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |
Parameter | Description | Value |
b | Natural birth rate | 0.01 |
d | Death rate | 0.0099 |
c | Incidence coefficient | 1.1 |
f | Exposed to infectious rate | 0.5 |
g | Recovery rate | 0.1 |
a | Disease induced death rate | 0.2 |
T | Number of years | 20 |
Parameter | Description | Value |
A | weight parameter | 1 |
B | weight parameter | 2 |
S0 | Initial susceptible population | 1000 |
E0 | Initial exposed population | 100 |
I0 | Initial infected population | 50 |
R0 | Initial recovered population | 15 |
N0 | Initial population | 1165 |
Parameter | Description | Value |
s0 | Percentage of initial susceptible population | 0.858 |
e0 | Percentage of initial exposed population | 0.086 |
i0 | Percentage of initial infected population | 0.043 |