
Citation: Warin Rangubpit, Sunan Kitjaruwankul, Panisak Boonamnaj, Pornthep Sompornpisut, R.B. Pandey. Globular bundles and entangled network of proteins (CorA) by a coarse-grained Monte Carlo simulation[J]. AIMS Biophysics, 2019, 6(2): 68-82. doi: 10.3934/biophy.2019.2.68
[1] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[2] | Felisia Angela Chiarello, Paola Goatin . Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14(2): 371-387. doi: 10.3934/nhm.2019015 |
[3] | Jan Friedrich, Oliver Kolb, Simone Göttlich . A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13(4): 531-547. doi: 10.3934/nhm.2018024 |
[4] | Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005 |
[5] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
[6] | Caterina Balzotti, Simone Göttlich . A two-dimensional multi-class traffic flow model. Networks and Heterogeneous Media, 2021, 16(1): 69-90. doi: 10.3934/nhm.2020034 |
[7] | Dong Li, Tong Li . Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2011, 6(4): 681-694. doi: 10.3934/nhm.2011.6.681 |
[8] | Raimund Bürger, Kenneth H. Karlsen, John D. Towers . On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(3): 461-485. doi: 10.3934/nhm.2010.5.461 |
[9] | Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004 |
[10] | Alexander Kurganov, Anthony Polizzi . Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4(3): 431-451. doi: 10.3934/nhm.2009.4.431 |
Macroscopic traffic flow models based on fluid-dynamics equations have been introduced in the transport engineering literature since the mid-fifties of last century, with the celebrated Lighthill, Whitham [11] and Richards [13] (LWR) model. Since then, the engineering and applied mathematical literature on the subject has considerably grown, addressing the need for more sophisticated models better capturing traffic flow characteristics. Indeed, the LWR model is based on the assumption that the mean traffic speed is a function of the traffic density, which is not experimentally verified in congested regimes. To overcome this issue, the so-called "second order" models (e.g. Payne-Whitham [12,15] and Aw-Rascle-Zhang [3,16]) consist of a mass conservation equation for the density and an acceleration balance law for the speed, thus considering the two quantities as independent.
More recently, "non-local" versions of the LWR model have been proposed in [5,14], where the speed function depends on a weighted mean of the downstream vehicle density to better represent the reaction of drivers to downstream traffic conditions.
Another limitation of the standard LWR model is the first-in first-out rule, not allowing faster vehicles to overtake slower ones. To address this and other traffic heterogeneities, "multi-class" models consist of a system of conservation equations, one for each vehicle class, coupled in the speed terms, see [4] and references therein for more details.
In this paper, we consider the following class of non-local systems of
$ ∂tρi(t,x)+∂x(ρi(t,x)vi((r∗ωi)(t,x)))=0,i=1,...,M, $
|
(1) |
where
$ r(t,x):=M∑i=1ρi(t,x), $
|
(2) |
$ vi(ξ):=vmaxiψ(ξ), $
|
(3) |
$ (r∗ωi)(t,x):=∫x+ηixr(t,y)ωi(y−x)dy, $
|
(4) |
and we assume:
We couple (1) with an initial datum
$ ρi(0,x)=ρ0i(x),i=1,…,M. $
|
(5) |
Model (1) is obtained generalizing the
Due to the possible presence of jump discontinuities, solutions to (1), (5) are intended in the following weak sense.
Definition 1.1. A function
$ \int_0^T\!\!\int_{-\infty}^\infty \left(\rho_i \partial_t \varphi +\rho_i v_i(r\ast\omega_i) \partial_x \varphi \right)(t, x) \mathinner{{\rm{d}}{x}} \mathinner{{\rm{d}}{t}} +\int_{-\infty}^\infty \rho_i^0 (x)\varphi(0, x) \mathinner{{\rm{d}}{x}} = 0 $ |
for all
The main result of this paper is the proof of existence of weak solutions to (1), (5), locally in time. We remark that, since the convolution kernels
Theorem 1.2. Let
In this work, we do not address the question of uniqueness of the solutions to (1). Indeed, even if discrete entropy inequalities can be derived as in [5,Proposition 3], in the case of systems this is in general not sufficient to single out a unique solution.
The paper is organized as follows. Section 2 is devoted to prove uniform
First of all, we extend
To this end, we approximate the initial datum
$ ρ0i,j=1Δx∫xj+1/2xj−1/2ρ0i(x)dx,j∈Z. $
|
Similarly, for the kernel, we set
$ ωki:=1Δx∫(k+1)ΔxkΔxω0i(x)dx,k∈N, $
|
so that
$ Vni,j:=vmaxiψ(Δx+∞∑k=0ωkirnj+k),i=1,…,M,j∈Z. $
|
(6) |
We consider the following Godunov-type scheme adapted to (1), which was introduced in [8] in the scalar case:
$ ρn+1i,j=ρni,j−λ(ρni,jVni,j+1−ρni,j−1Vni,j) $
|
(7) |
where we have set
We provide here the necessary estimates to prove the convergence of the sequence of approximate solutions constructed via the Godunov scheme (7).
Lemma 2.1. (Positivity) For any
$ λ≤1vmaxM‖ψ‖∞, $
|
(8) |
the scheme (7) is positivity preserving on
Proof. Let us assume that
$ ρn+1i,j=ρni,j(1−λVni,j+1)+λρni,j−1Vni,j≥0 $
|
(9) |
under assumption (8).
Corollary 1. (
$ ‖ρni‖1=‖ρ0i‖1,i=1,…,M, $
|
(10) |
where
Proof. Thanks to Lemma 2.1, for all
$ ‖ρn+1i‖1=Δx∑jρn+1i,j=Δx∑j(ρni,j−λρni,jVni,j+1+λρni,j−1Vni,j)=Δx∑jρni,j, $
|
proving (10).
Lemma 2.2. (
$ T < \left( M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0\right)^{-1}. $ |
Proof. Let
$ ρn+1i,j=ρni,j(1−λVni,j+1)+λρni,j−1Vni,j≤ˉρ(1+λ(Vni,j−Vni,j+1)) $
|
(11) |
and
$ |Vni,j−Vni,j+1|=vmaxi|ψ(Δx+∞∑k=0ωkirnj+k)−ψ(Δx+∞∑k=0ωkirnj+k+1)|≤vmaxi‖ψ′‖∞Δx|+∞∑k=0ωki(rnj+k+1−rnj+k)|=vmaxi‖ψ′‖∞Δx|−ω0irnj++∞∑k=1(ωk−1i−ωki)rnj+k|≤vmaxi‖ψ′‖∞ΔxM‖ρn‖∞ωi(0) $
|
(12) |
where
$ {\left\|{{{ \boldsymbol{\rho}}}^{n+1}}\right\|}_\infty \leq {\left\|{{{ \boldsymbol{\rho}}}^{n}}\right\|}_\infty \left( 1+ M K v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0 \Delta t \right), $ |
which implies
$ ‖ρn‖∞≤‖ρ0‖∞eCnΔt, $
|
with
$ t\leq \frac{1}{ M K v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}\ln \left(\frac{K}{{\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty}\right) \leq \frac{1}{ M e {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}\, , $ |
where the maximum is attained for
Iterating the procedure, at time
$ t^{m+1}\leq t^m + \frac{m}{ M e^m {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0}. $ |
Therefore, the approximate solution remains bounded, uniformly in
$ T\leq \frac{1}{ M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0} \sum\limits_{m = 1}^{+\infty} \frac{m}{e^m} \leq \frac{1}{ M {\left\|{{ \boldsymbol{\rho}}^0}\right\|}_\infty v_M^{\max} {\left\|{\psi'}\right\|}_\infty W_0 }\, . $ |
Remark 1. Figure 1 shows that the simplex
$ \mathcal{S}: = \left\{ \boldsymbol{\rho}\in \mathbb{R}^M \colon \sum\limits_{i = 1}^M \rho_i \leq 1, \; \rho_i \geq 0\; \mbox{for}\; i = 1, \ldots, M\right\} $ |
is not an invariant domain for (1), unlike the classical multi-population model [4]. Indeed, let us consider the system
$ ∂tρi(t,x)+∂x(ρi(t,x)vi(r(t,x)))=0,i=1,...,M, $
|
(13) |
where
Lemma 2.3. Under the CFL condition
$ λ≤1vmaxM(‖ψ‖∞+‖ψ′‖∞), $
|
for any initial datum
$ ρn+1j=ρnj−λ[F(ρnj,ρnj+1)−F(ρnj−1,ρnj)], $
|
(14) |
with
$ ρnj∈S∀j∈Z,n∈N. $
|
(15) |
Proof. Assuming that
$ ρn+1i,j=ρni,j−λ[vmaxiρni,jψ(rnj+1)−vmaxiρni,j−1ψ(rnj)]. $
|
Summing on the index
$ rn+1j=M∑i=1ρn+1i,j=M∑i=1ρni,j−λM∑i=1[vmaxiρni,jψ(rnj+1)−vmaxiρni,j−1ψ(rnj)]=rnj+λψ(rnj)M∑i=1vmaxiρni,j−1−λψ(rnj+1)M∑i=1vmaxiρni,j. $
|
Defining the following function of
$ \Phi(\rho^n_{1, j}, \ldots, \rho^n_{M, j}) = r^n_j+\lambda {\psi(r^n_j)\sum\limits_{i = 1}^{M}} v_i^{\max}\rho^n_{i, j-1}-\lambda {\psi(r^n_{j+1})\sum\limits_{i = 1}^{M}} v_i^{\max}\rho^n_{i, j}, $ |
we observe that
$ \Phi(0, \ldots, 0) = \lambda \psi(0)\sum\limits_{i}^M v_i^{\max}\rho^n_{i, j-1}\leq \lambda {\left\|{\psi}\right\|}_\infty v_{M}^{\max} \leq 1 $ |
if
$ \Phi(\rho^n_{1, j}, ..., \rho^n_{M, j}) = 1-\lambda \psi(r^n_{j+1})\sum\limits_{i = 1}^{M}v_i^{\max}\rho^n_{i, j}\leq 1 $ |
for
$ \frac{ \partial\Phi}{ \partial\rho^n_{i, j}} ( \boldsymbol{\rho}_j^n) = 1 + \lambda \psi'(r^n_j) \sum\limits_{i = 1}^M v_i^{\max} \rho^n_{i, j-1} - \lambda\psi(r^n_{j+1}) v_i^{\max} \geq 0 $ |
if
$ ρn+1i,j=ρni,j(1−λvmaxiψ(rnj+1))+λvmaxiρni,j−1ψ(rnj)≥0 $
|
if
Lemma 2.4. (Spatial
$ T≤mini=1,…,M 1H(TV(ρ0i)+1), $
|
(16) |
where
Proof. Subtracting the identities
$ ρn+1i,j+1=ρni,j+1−λ(ρni,j+1Vni,j+2−ρni,jVni,j+1), $
|
(17) |
$ ρn+1i,j=ρni,j−λ(ρni,jVni,j+1−ρni,j−1Vni,j), $
|
(18) |
and setting
$ Δn+1i,j+1/2=Δni,j+1/2−λ(ρni,j+1Vni,j+2−2ρni,jVni,j+1+ρni,j−1Vni,j). $
|
Now, we can write
$ Δn+1i,j+1/2=(1−λVni,j+2)Δni,j+1 $
|
(19) |
$ +λVni,jΔni,j−1/2−λρni,j(Vni,j+2−2Vni,j+1+Vni,j). $
|
(20) |
Observe that assumption (8) guarantees the positivity of (19). The term (20) can be estimated as
$ Vni,j+2−2Vni,j+1+Vni,j==vmaxi(ψ(Δx+∞∑k=0ωkirnj+k+2)−2ψ(Δx+∞∑k=0ωkirnj+k+1)+ψ(Δx+∞∑k=0ωkirnj+k))=vmaxiψ′(ξj+1)Δx(+∞∑k=0ωkirnj+k+2−+∞∑k=0ωkirnj+k+1)+vmaxiψ′(ξj)Δx(+∞∑k=0ωkirnj+k−+∞∑k=0ωkirnj+k+1)=vmaxiψ′(ξj+1)Δx(+∞∑k=1(ωk−1i−ωki)rnj+k+1−ω0irnj+1)+vmaxiψ′(ξj)Δx(+∞∑k=1(ωki−ωk−1i)rnj+k+ω0irnj)=vmaxi(ψ′(ξj+1)−ψ′(ξj))Δx(+∞∑k=1(ωk−1i−ωki)rnj+k+1−ω0irnj+1)+vmaxiψ′(ξj)Δx(+∞∑k=1(ωk−1i−ωki)(rnj+k+1−rnj+k)+ω0i(rnj−rnj+1))=vmaxiψ″(˜ξj+1/2)(ξj+1−ξj)Δx(+∞∑k=1M∑β=1ωkiΔnβ,j+k+3/2)+vmaxiψ′(ξj)Δx(M∑β=1N−1∑k=1(ωk−1i−ωki)Δnβ,j+k+1/2−ω0iΔnβ,j+1/2), $
|
with
$ ξj+1−ξj=ϑΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+2+(1−ϑ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−μΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−(1−μ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k=ϑΔx+∞∑k=1ωk−1iM∑β=1ρnβ,j+k+1+(1−ϑ)Δx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−μΔx+∞∑k=0ωkiM∑β=1ρnβ,j+k+1−(1−μ)Δx+∞∑k=−1ωk+1iM∑β=1ρnβ,j+k+1=Δx+∞∑k=1[ϑωk−1i+(1−ϑ)ωki−μωki−(1−μ)ωk+1i]M∑β=1ρnβ,j+k+1+(1−ϑ)Δxω0iM∑β=1ρnβ,j+1−μΔxω0iM∑β=1ρnβ,j+1−(1−μ)Δx(ω0iM∑β=1ρnβ,j+ω1iM∑β=1ρnβ,j+1). $
|
By monotonicity of
$ \vartheta \omega_i^{k-1} + (1- \vartheta)\omega_i^{k} -\mu \omega_i^{k} -(1-\mu)\omega_i^{k+1} \geq 0\, . $ |
Taking the absolute values we get
$ |ξj+1−ξj|≤Δx{+∞∑k=2[ϑωk−1i+(1−ϑ)ωki−μωki−(1−μ)ωk+1i]+4ω0i}M‖ρn‖∞≤Δx{+∞∑k=2[ωk−1i−ωk+1i]+4ω0i}M‖ρn‖∞≤Δx6W0M‖ρn‖∞. $
|
Let now
$ ∑j|Δn+1i,j+1/2|≤∑j|Δni,j+1/2|(1−λ(Vni,j+2−Vni,j+1))+ΔtHK1, $
|
where
$ ∑j|Δn+1i,j+1/2|≤∑j|Δni,j+1/2|(1+ΔtG)+ΔtHK1, $
|
with
$ ∑j|Δni,j+1/2|≤eGnΔt∑j|Δ0i,j+1/2|+eHK1nΔt−1, $
|
that we can rewrite as
$ TV(ρΔxi)(nΔt,⋅)≤eGnΔtTV(ρ0i)+eHK1nΔt−1≤eHK1nΔt(TV(ρ0i)+1)−1, $
|
since
$ t≤1HK1ln(K1+1TV(ρ0i)+1), $
|
where the maximum is attained for some
$ \ln\left(\frac{K_1+1}{ \mathinner{{\rm{TV}}}(\rho^0_i)+1}\right) = \frac{K_1}{K_1+1}\, . $ |
Therefore the total variation is uniformly bounded for
$ t≤1He(TV(ρ0i)+1). $
|
Iterating the procedure, at time
$ tm+1≤tm+mHem(TV(ρ0i)+1). $
|
(21) |
Therefore, the approximate solution has bounded total variation for
$ T≤1H(TV(ρ0i)+1). $
|
Corollary 2. Let
Proof. If
$ TV(ρΔxi;[0,T]×R)=nT−1∑n=0∑j∈ZΔt|ρni,j+1−ρni,j|+(T−nTΔt)∑j∈Z|ρnTi,j+1−ρnTi,j|⏟≤Tsupt∈[0,T]TV(ρΔxi)(t,⋅)+nT−1∑n=0∑j∈ZΔx|ρn+1i,j−ρni,j|. $
|
We then need to bound the term
$ \sum\limits_{n = 0}^{n_T-1}\sum\limits_{j\in \mathbb{Z}}\Delta x {\left|{\rho_{i, j}^{n+1}-\rho_{i, j}^n}\right|}. $ |
From the definition of the numerical scheme (7), we obtain
$ ρn+1i,j−ρni,j=λ(ρni,j−1Vni,j−ρni,jVni,j+1)=λ(ρni,j−1(Vni,j−Vni,j+1)+Vni,j+1(ρni,j−1−ρni,j)). $
|
Taking the absolute values and using (12) we obtain
$ |ρn+1i,j−ρni,j|≤λ(vmaxi‖ψ′‖∞M‖ρn‖∞ωi(0)Δx|ρni,j−1|+vmaxi‖ψ‖∞|ρni,j−1−ρni,j|). $
|
Summing on
$ ∑j∈ZΔx|ρn+1i,j−ρni,j|=vmaxi‖ψ′‖∞M‖ρn‖∞ωi(0)Δt∑j∈ZΔx|ρni,j−1|+vmaxi‖ψ‖∞Δt∑j∈Z|ρni,j−1−ρni,j|, $
|
which yields
$ nT−1∑n=0∑j∈ZΔx|ρn+1i,j−ρni,j|≤vmaxM‖ψ‖∞Tsupt∈[0,T]TV(ρΔxi)(t,⋅)+vmaxM‖ψ′‖∞MW0Tsupt∈[0,T]‖ρΔxi(t,⋅)‖1‖ρΔxi(t,⋅)‖∞ $
|
that is bounded by Corollary 1, Lemma 2.2 and Lemma 2.4.
To complete the proof of the existence of solutions to the problem (1), (5), we follow a Lax-Wendroff type argument as in [5], see also [10], to show that the approximate solutions constructed by scheme (7) converge to a weak solution of (1). By Lemma 2.2, Lemma 2.4 and Corollary 2, we can apply Helly's theorem, stating that for
$ nT−1∑n=0∑jφ(tn,xj)(ρn+1i,j−ρni,j)=−λnT−1∑n=0∑jφ(tn,xj)(ρni,jVni,j+1−ρni,j−1Vni,j). $
|
Summing by parts we obtain
$ −∑jφ((nT−1)Δt,xj)ρnTi,j+∑jφ(0,xj)ρ0i,j+nT−1∑n=1∑j(φ(tn,xj)−φ(tn−1,xj))ρni,j+λnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))Vni,j+1ρni,j=0. $
|
(22) |
Multiplying by
$ −Δx∑jφ((nT−1)Δt,xj)ρnTi,j+Δx∑jφ(0,xj)ρ0i,j $
|
(23) |
$ +ΔxΔtnT−1∑n=1∑j(φ(tn,xj)−φ(tn−1,xj))Δtρni,j $
|
(24) |
$ +ΔxΔtnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))ΔxVni,j+1ρni,j=0. $
|
(25) |
By
$ ∫R(ρ0i(x)φ(0,x)−ρi(T,x)φ(T,x))dx+∫T0∫Rρi(t,x)∂tφ(t,x)dxdt, $
|
(26) |
as
$ ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)ΔxVni,j+1ρni,j=ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δx(ρni,jVni,j+1−ρni,jVni,j)+ΔxΔtnT−1∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δxρni,jVni,j. $
|
(27) |
By (12) we get the estimate
$ ρni,jVni,j+1−ρni,jVni,j≤vmaxi‖ψ′‖∞ΔxM‖ρ‖2∞ωi(0). $
|
Set
$ ΔxΔtnT∑n=0∑jφ(tn,xj+1)−φ(tn,xj)Δx(ρni,jVni,j+1−ρni,jVni,j)≤ΔxΔt‖∂xφ‖∞nT∑n=0j1∑j=j0vmaxi‖ψ′‖∞M‖ρ‖2∞ωi(0)Δx≤‖∂xφ‖∞vmaxi‖ψ′‖∞M‖ρ‖2∞ωi(0)Δx2RT, $
|
which goes to zero as
Finally, again by the
$ ΔxΔtnT−1∑n=0∑j(φ(tn,xj+1)−φ(tn,xj))Δxρni,jVni,j−12→∫T0∫R∂xφ(t,x)ρi(t,x)vi(r∗ωi)dxdt. $
|
In this section we perform some numerical simulations to illustrate the behaviour of solutions to (1) for
In this example, we consider a stretch of road populated by cars and trucks. The space domain is given by the interval
$ {∂tρ1(t,x)+∂x(ρ1(t,x)vmax1ψ((r∗ω1)(t,x)))=0,∂tρ2(t,x)+∂x(ρ2(t,x)vmax2ψ((r∗ω2)(t,x)))=0, $
|
(28) |
with
$ ω1(x)=2η1(1−xη1),η1=0.3,ω2(x)=2η2(1−xη2),η2=0.1,ψ(ξ)=max{1−ξ,0},ξ≥0,vmax1=0.8,vmax2=1.3. $
|
In this setting,
$ {ρ1(0,x)=0.5χ[−1.1,−1.6],ρ2(0,x)=0.5χ[−1.6,−1.9], $
|
in which a platoon of trucks precedes a group of cars. Due to their higher speed, cars overtake trucks, in accordance with what observed in the local case [4].
The aim of this test is to study the possible impact of the presence of Connected Autonomous Vehicles (CAVs) on road traffic performances. Let us consider a circular road modeled by the space interval
$ {∂tρ1(t,x)+∂x(ρ1(t,x)vmax1ψ((r∗ω1)(t,x)))=0,∂tρ2(t,x)+∂x(ρ2(t,x)vmax2ψ((r∗ω2)(t,x)))=0,ρ1(0,x)=β(0.5+0.3sin(5πx)),ρ2(0,x)=(1−β)(0.5+0.3sin(5πx)), $
|
(29) |
with
$ ω1(x)=1η1,η1=1,ω2(x)=2η2(1−xη2),η2=0.01,ψ(ξ)=max{1−ξ,0},ξ≥0,vmax1=vmax2=1. $
|
Above
As a metric of traffic congestion, given a time horizon
$ J(β)=∫T0d|∂xr|dt, $
|
(30) |
$ Ψ(β)=∫T0[ρ1(t,ˉx)vmax1ψ((r∗ω1)(t,ˉx))+ρ2(t,ˉx)vmax2ψ((r∗ω2)(t,ˉx))]dt, $
|
(31) |
where
The authors are grateful to Luis M. Villada for suggesting the non-local multi-class traffic model studied in this paper.
We provide here alternative estimates for (1), based on approximate solutions constructed via the following adapted Lax-Friedrichs scheme:
$ ρn+1i,j=ρni,j−λ(Fni,j+1/2−Fni,j−1/2), $
|
(32) |
with
$ Fni,j+1/2:=12ρni,jVni,j+12ρni,j+1Vni,j+1+α2(ρni,j−ρni,j+1), $
|
(33) |
where
Lemma A.1. For any
$ λα<1, $
|
(34) |
$ α≥vmaxM‖ψ‖∞, $
|
(35) |
the scheme (33)-(32) is positivity preserving on
Lemma A.2. (
$ T<(M‖ρ0‖∞vmaxM‖ψ′‖∞W0)−1. $
|
(36) |
Lemma A.3. (
$ Δt≤22α+Δx‖ψ′‖∞W0vmaxM‖ρ‖∞Δx, $
|
(37) |
then the solution constructed by the algorithm (33)-(32) has uniformly bounded total variation for any
$ T≤mini=1,...,M1D(TV(ρ0i)+1), $
|
(38) |
where
[1] |
Furukawa Y, Nukina N (2013) Functional diversity of protein fibrillar aggregates from physiology to RNA granules to neurodegenerative diseases. Biochim Biophys Acta 1832: 1271–1278. doi: 10.1016/j.bbadis.2013.04.011
![]() |
[2] |
Bai Y, Luo Q, Liu J (2016) Protein self-assembly via supramolecular strategies. Chem Soc Rev 45: 2756–2767. doi: 10.1039/C6CS00004E
![]() |
[3] |
McManus JJ, Charbonneau P, Zaccarelli E, et al. (2016) The physics of protein self-assembly. Curr Opin Colloid Interface Sci 22: 73–79. doi: 10.1016/j.cocis.2016.02.011
![]() |
[4] |
Sgarbossa A (2012) Natural biomolecules protein aggregation: Emerging strategies against amyloidogenesis. Int J Mol Sci 13: 17121–17137. doi: 10.3390/ijms131217121
![]() |
[5] |
Sun H, Luo Q, Hou C, et al. (2017) Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today 14: 16–41. doi: 10.1016/j.nantod.2017.04.006
![]() |
[6] |
Garcia-Seisdedos H, Empereur-Mot C, Elad N, et al. (2017) Proteins evolve on the edge of supramolecular self-assembly. Nature 548: 244–247. doi: 10.1038/nature23320
![]() |
[7] | Pandey RB, Farmer BL, Gerstman BS (2015) Self-assembly dynamics for the transition of a globular aggregate to a fibril network of lysozyme proteins via a coarse-grained Monte Carlo simulation. AIP Adv 5. |
[8] |
Yang L, Liu A, Cao S, et al. (2016) Self-Assembly of proteins: Towards supramolecular materials. Chem Eur J 22: 15570–15582. doi: 10.1002/chem.201601943
![]() |
[9] |
Hmiel SP, Snavely MD, Florer JB, et al. (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171: 4742–4751. doi: 10.1128/jb.171.9.4742-4751.1989
![]() |
[10] | Maguire ME (1992) MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx. J Bioenerg Biomembr 24: 319–328. |
[11] |
Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genomics 3: 151–169. doi: 10.1089/omi.1.1998.3.151
![]() |
[12] | Eshaghi S, Niegowski D, Kohl A, et al. (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313: 354–357. |
[13] |
Lunin VV, Dobrovetsky E, Khutoreskaya G, et al. (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440: 833–837. doi: 10.1038/nature04642
![]() |
[14] |
Payandeh J, Li C, Ramjeesingh M, et al. (2008) Probing structure-function relationships and gating mechanisms in the CorA Mg2+ transport system. J Biol Chem 283: 11721–11733. doi: 10.1074/jbc.M707889200
![]() |
[15] |
Payandeh J, Pai EF (2006) A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J 25: 3762–3773. doi: 10.1038/sj.emboj.7601269
![]() |
[16] |
Dalmas O, Cuello LG, Jogini V, et al. (2010) Structural Dynamics of the Magnesium-bound Conformation of CorA in a lipid bilayer. Structure 18: 868–878. doi: 10.1016/j.str.2010.04.009
![]() |
[17] |
Dalmas O, Sompornpisut P, Bezanilla F, et al. (2014) Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 5: 3590. doi: 10.1038/ncomms4590
![]() |
[18] |
Neale C, Chakrabarti N, Pomorski P, et al. (2015) Hydrophobic gating of ion permeation in magnesium channel CorA. Plos Comput Biol 11: e1004303. doi: 10.1371/journal.pcbi.1004303
![]() |
[19] |
Kitjaruwankul S, Wapeesittipan P, Boonamnaj P, et al. (2016) Inner and outer coordination shells of Mg2+ in CorA selectivity filter from Molecular Dynamics simulations. J Phys Chem B 120: 406–417. doi: 10.1021/acs.jpcb.5b10925
![]() |
[20] |
Matthies D, Dalmas O, Borgnia MJ, et al. (2016) Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164: 747–756. doi: 10.1016/j.cell.2015.12.055
![]() |
[21] |
Chakrabarti N, Neale C, Payandeh J, et al. (2010) An iris-like mechanism of pore dilation in the CorA magnesium transport system. Biophys J 98: 784–792. doi: 10.1016/j.bpj.2009.11.009
![]() |
[22] |
Nordin N, Guskov A, Phua T, et al. (2013) Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 451: 365–374. doi: 10.1042/BJ20121745
![]() |
[23] |
Kitjaruwankul S, Khrutto C, Sompornpisut P, et al. (2016) Asymmetry in structural response of inner and outer transmembrane segments of CorA protein by a coarse-grain model. J Chem Phys 145: 135101. doi: 10.1063/1.4963807
![]() |
[24] |
Kitjaruwankul S, Boonamnaj P, Paudel SS, et al. (2018) Thermal-induced folding and unfolding of a transmembrane protein (CorA). Physica A 506: 987–992. doi: 10.1016/j.physa.2018.05.014
![]() |
[25] |
Munishkina LA, Ahmad A, Fink AL, et al. (2008) Guiding protein aggregation with macromolecular crowding. Biochemistry 47: 8993–9006. doi: 10.1021/bi8008399
![]() |
[26] |
Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276: 10577–10580. doi: 10.1074/jbc.R100005200
![]() |
[27] |
Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11: 114–119. doi: 10.1016/S0959-440X(00)00172-X
![]() |
[28] |
Alas SJ, González-Pérez PP, Beltrán HI (2019) In silico minimalist approach to study 2D HP protein folding into an inhomogeneous space mimicking osmolyte effect: First trial in the search of foldameric backbones. BioSystems 181: 31–43. doi: 10.1016/j.biosystems.2019.04.005
![]() |
[29] |
González-Pérez PP, Orta DJ, Pena I, et al. (2017) A computational approach to studying protein folding problems considering the crucial role of the intracellular environment. J Comput Biol 24: 995–1013. doi: 10.1089/cmb.2016.0115
![]() |
[30] |
Tsao D, Dokholyan NV (2010) Macromolecular crowding induces polypeptide com paction and decreases folding cooperativity. Phys Chem Chem Phys 12: 3491–3500. doi: 10.1039/b924236h
![]() |
[31] |
Ping G, Yuan JM, Vallieres M, et al. (2003) Effects of confinement on protein folding and protein stability. J Chem Phys 118: 8042–8048. doi: 10.1063/1.1564053
![]() |
[32] |
Kuznetsova I, Zaslavsky B, Breydo L, et al. (2015) Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 20: 1377–1409. doi: 10.3390/molecules20011377
![]() |
[33] | Binder K (1995) Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press. |
[34] | Pandey RB, Farmer BL (2014) Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation. J Chem Phys 141. |
[35] | Betancourt MR, Thirumalai D. (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 2:361–369. |
[36] |
Miyazawa S, Jernigan RL (1985) Estimation of effective inter residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552. doi: 10.1021/ma00145a039
![]() |
[37] |
Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term for simulation and treading. J Mol Biol 256: 623–644. doi: 10.1006/jmbi.1996.0114
![]() |
[38] |
Tanaka S, Scheraga HA. (1976) Medium and long range interaction parameters between amino acids for predicting three dimensional structures of proteins. Macromolecules 9: 945–950. doi: 10.1021/ma60054a013
![]() |
[39] |
Godzik A (1996) Knowledge-based potentials for protein folding: what can we learn from protein structures? Structure 4: 363–366. doi: 10.1016/S0969-2126(96)00041-X
![]() |
[40] |
Huang SY, Zou X. (2011) Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures. Proteins 79: 2648–2661. doi: 10.1002/prot.23086
![]() |
[41] |
Pandey RB, Kuang Z, Farmer BL, et al. (2012) Stability of peptide (P1, P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approach. Soft Matter 8: 9101–9109. doi: 10.1039/c2sm25870f
![]() |
[42] |
Feng J, Pandey RB, Berry RJ, et al. (2011) Adsorption mechanism of single amino acid and surfactant molecules to Au {111} surfaces in aqueous solution: design rules for metal binding molecules. Soft Matter 7: 2113–2120. doi: 10.1039/c0sm01118e
![]() |
![]() |
![]() |
1. | Rinaldo M. Colombo, Magali Lecureux-Mercier, Mauro Garavello, 2020, Chapter 5, 978-3-030-50449-6, 83, 10.1007/978-3-030-50450-2_5 | |
2. | Felisia Angela Chiarello, Paola Goatin, Luis Miguel Villada, Lagrangian-antidiffusive remap schemes for non-local multi-class traffic flow models, 2020, 39, 2238-3603, 10.1007/s40314-020-1097-9 | |
3. | Alexandre Bayen, Jan Friedrich, Alexander Keimer, Lukas Pflug, Tanya Veeravalli, Modeling Multilane Traffic with Moving Obstacles by Nonlocal Balance Laws, 2022, 21, 1536-0040, 1495, 10.1137/20M1366654 | |
4. | Felisia Angela Chiarello, 2021, Chapter 5, 978-3-030-66559-3, 79, 10.1007/978-3-030-66560-9_5 | |
5. | Jan Friedrich, Simone Göttlich, Maximilian Osztfalk, Network models for nonlocal traffic flow, 2022, 56, 2822-7840, 213, 10.1051/m2an/2022002 | |
6. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
7. | Giuseppe Maria Coclite, Lorenzo di Ruvo, On the initial-boundary value problem for a non-local elliptic-hyperbolic system related to the short pulse equation, 2022, 3, 2662-2963, 10.1007/s42985-022-00208-w | |
8. | Kuang Huang, Qiang Du, Stability of a Nonlocal Traffic Flow Model for Connected Vehicles, 2022, 82, 0036-1399, 221, 10.1137/20M1355732 | |
9. | Yanbing Wang, Daniel B. Work, Estimation for heterogeneous traffic using enhanced particle filters, 2022, 18, 2324-9935, 568, 10.1080/23249935.2021.1881186 | |
10. | Felisia Angela Chiarello, Harold Deivi Contreras, Luis Miguel Villada, Nonlocal reaction traffic flow model with on-off ramps, 2022, 17, 1556-1801, 203, 10.3934/nhm.2022003 | |
11. | Ioana Ciotir, Rim Fayad, Nicolas Forcadel, Antoine Tonnoir, A non-local macroscopic model for traffic flow, 2021, 55, 0764-583X, 689, 10.1051/m2an/2021006 | |
12. | Maria Colombo, Gianluca Crippa, Marie Graff, Laura V. Spinolo, On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws, 2021, 55, 0764-583X, 2705, 10.1051/m2an/2021073 | |
13. | Alexander Keimer, Lukas Pflug, 2023, 15708659, 10.1016/bs.hna.2022.11.001 | |
14. | Alexandre Bayen, Jean-Michel Coron, Nicola De Nitti, Alexander Keimer, Lukas Pflug, Boundary Controllability and Asymptotic Stabilization of a Nonlocal Traffic Flow Model, 2021, 49, 2305-221X, 957, 10.1007/s10013-021-00506-7 | |
15. | F. A. CHIARELLO, J. FRIEDRICH, P. GOATIN, S. GÖTTLICH, O. KOLB, A non-local traffic flow model for 1-to-1 junctions, 2020, 31, 0956-7925, 1029, 10.1017/S095679251900038X | |
16. | Jan Friedrich, Simone Göttlich, Alexander Keimer, Lukas Pflug, 2024, Chapter 30, 978-3-031-55263-2, 347, 10.1007/978-3-031-55264-9_30 | |
17. | Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara, Nikhil Manoj, Convergence of a second-order scheme for non-local conservation laws, 2023, 57, 2822-7840, 3439, 10.1051/m2an/2023080 | |
18. | Jan Friedrich, Sanjibanee Sudha, Samala Rathan, Numerical schemes for a class of nonlocal conservation laws: a general approach, 2023, 18, 1556-1801, 1335, 10.3934/nhm.2023058 | |
19. | Jan Friedrich, Simone Göttlich, Michael Herty, Lyapunov Stabilization for Nonlocal Traffic Flow Models, 2023, 61, 0363-0129, 2849, 10.1137/22M152181X | |
20. | Felisia A. Chiarello, Harold D. Contreras, 2024, Chapter 26, 978-3-031-55263-2, 303, 10.1007/978-3-031-55264-9_26 | |
21. | Jan Friedrich, Lyapunov stabilization of a nonlocal LWR traffic flow model, 2023, 23, 1617-7061, 10.1002/pamm.202200084 | |
22. | Agatha Joumaa, Paola Goatin, Giovanni De Nunzio, 2023, A Macroscopic Model for Multi-Modal Traffic Flow in Urban Networks, 979-8-3503-9946-2, 411, 10.1109/ITSC57777.2023.10422168 | |
23. | Saeed Mohammadian, Zuduo Zheng, Md. Mazharul Haque, Ashish Bhaskar, Continuum modeling of freeway traffic flows: State-of-the-art, challenges and future directions in the era of connected and automated vehicles, 2023, 3, 27724247, 100107, 10.1016/j.commtr.2023.100107 | |
24. | Harold Deivi Contreras, Paola Goatin, Luis-Miguel Villada, A two-lane bidirectional nonlocal traffic model, 2025, 543, 0022247X, 129027, 10.1016/j.jmaa.2024.129027 | |
25. | Felisia Angela Chiarello, Paola Goatin, 2023, Chapter 3, 978-3-031-29874-5, 49, 10.1007/978-3-031-29875-2_3 | |
26. | Alexander Keimer, Lukas Pflug, Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity, 2023, 361, 1778-3569, 1723, 10.5802/crmath.490 | |
27. | Archie J. Huang, Animesh Biswas, Shaurya Agarwal, Incorporating Nonlocal Traffic Flow Model in Physics-Informed Neural Networks, 2024, 25, 1524-9050, 16249, 10.1109/TITS.2024.3429029 | |
28. | Rinaldo M. Colombo, Mauro Garavello, Claudia Nocita, General stability estimates in nonlocal traffic models for several populations, 2025, 32, 1021-9722, 10.1007/s00030-025-01034-w |