Citation: O.S. Sorzano Carlos, Vargas Javier, Otón Joaquín, Abrishami Vahid, M. de la Rosa-Trevín José, del Riego Sandra, Fernández-Alderete Alejandro, Martínez-Rey Carlos, Marabini Roberto, M. Carazo José. Fast and accurate conversion of atomic models into electron density maps[J]. AIMS Biophysics, 2015, 2(1): 8-20. doi: 10.3934/biophy.2015.1.8
[1] | Jiayin Liu . On stability and instability of standing waves for the inhomogeneous fractional Schrodinger equation. AIMS Mathematics, 2020, 5(6): 6298-6312. doi: 10.3934/math.2020405 |
[2] | Meixia Cai, Hui Jian, Min Gong . Global existence, blow-up and stability of standing waves for the Schrödinger-Choquard equation with harmonic potential. AIMS Mathematics, 2024, 9(1): 495-520. doi: 10.3934/math.2024027 |
[3] | Liu Gao, Chunfang Chen, Jianhua Chen, Chuanxi Zhu . Existence of nontrivial solutions for Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian and local nonlinearity. AIMS Mathematics, 2021, 6(2): 1332-1347. doi: 10.3934/math.2021083 |
[4] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
[5] | Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403 |
[6] | Paul Bracken . Applications of the lichnerowicz Laplacian to stress energy tensors. AIMS Mathematics, 2017, 2(3): 545-556. doi: 10.3934/Math.2017.2.545 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yongbin Wang, Binhua Feng . Instability of standing waves for the inhomogeneous Gross-Pitaevskii equation. AIMS Mathematics, 2020, 5(5): 4596-4612. doi: 10.3934/math.2020295 |
[9] | Chengbo Zhai, Yuanyuan Ma, Hongyu Li . Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral. AIMS Mathematics, 2020, 5(5): 4754-4769. doi: 10.3934/math.2020304 |
[10] | Yang Pu, Hongying Li, Jiafeng Liao . Ground state solutions for the fractional Schrödinger-Poisson system involving doubly critical exponents. AIMS Mathematics, 2022, 7(10): 18311-18322. doi: 10.3934/math.20221008 |
In this paper, we discuss the existence and multiplicity of standing wave solutions for the following perturbed fractional p-Laplacian systems with critical nonlinearity
$ {εps(−Δ)spu+V(x)|u|p−2u=K(x)|u|p∗s−2u+Fu(x,u,v),x∈RN,εps(−Δ)spv+V(x)|v|p−2v=K(x)|v|p∗s−2v+Fv(x,u,v),x∈RN, $
|
(1.1) |
where $ \varepsilon $ is a positive parameter, $ N > ps, s\in (0, 1), p^{*}_{s} = \frac{Np}{N-ps} $ and $ (-\Delta)^{s}_{p} $ is the fractional p-Laplacian operator, which is defined as
$ (−Δ)spu(x)=limε→0∫RN∖Bε(x)|u(x)−u(y)|p−2(u(x)−u(y))|x−y|N+psdy,x∈RN, $
|
where $ B_{\varepsilon}(x) = \{y\in \mathbb{R}^{N}: |x-y| < \varepsilon\} $. The functions $ V(x), K(x) $ and $ F(x, u, v) $ satisfy the following conditions:
$(V_{0})\; V\in C(\mathbb{R}^{N}, \mathbb{R}), \min_{x\in \mathbb{R}^{N}} V(x) = 0 {\rm{\; and\; there\; is\; a\; constant}}\; b > 0 {\rm{\; such \; that\; the\; set}}\; $ $ V^{b}: = \{x\in \mathbb{R}^{N}: V(x) < b\} {\rm{\; has\; finite\; Lebesgue\; measure}}; $
$(K_{0})\; K\in C(\mathbb{R}^{N}, \mathbb{R}), 0 < \inf K\leq \sup K < \infty; $
$(F_{1})\; F\in C^{1}(\mathbb{R}^{N} \times \mathbb{R}^{2}, \mathbb{R})\; {{\rm{and}}}\; F_{s}(x, s, t), F_{t}(x, s, t) = o(|s|^{p-1} + |t|^{p-1}) $ $ {\rm{uniformly\; in}}\; x\in \mathbb{R}^{N}\; {{\rm{as}}} \; |s|+|t|\rightarrow 0;$
$(F_{2})\; {\rm{there \; exist}}\; C_{0} > 0\; {\rm{ and}}\; p < \kappa < p_{s}^{*}\; {\rm{ such that}} $ $|F_{s}(x, s, t)|, |F_{t}(x, s, t)|\leq C_{0}(1+ |s|^{\kappa-1} + |t|^{\kappa-1}); $
$(F_{3})\; {\rm{there \; exist}}\; l_{0} > 0, \; d > p \; {\rm{and}}\; \mu\in (p, p_{s}^{*}) \; {\rm{such\; that}}\; F(x, s, t)\geq l_{0}(|s|^{d} +|t|^{d})\; {\rm{and}} $ $0 < \mu F(x, s, t)\leq F_{s}(x, s, t)s + F_{t}(x, s, t)t \; {{\rm{for \; all}}}\; (x, s, t)\in \mathbb{R}^{N}\times \mathbb{R}^{2};$
$(F_{4})\; F_{s}(x, -s, t) = -F_{s}(x, s, t)\; {{\rm{and}}}\; F_{t}(x, s, -t) = -F_{t}(x, s, t)\; {\rm{for\; all}}\; (x, s, t)\in \mathbb{R}^{N} \times \mathbb{R}^{2}. $
Conditions $ (V_{0}), (K_{0}) $, suggested by Ding and Lin [11] in studying perturbed Schrödinger equations with critical nonlinearity, and then was used in [28,32,33].
In recent years, a great deal of attention has been focused on the study of standing wave solutions for perturbed fractional Schrödinger equation
$ ε2s(−Δ)su+V(x)u=f(u)inRN, $
|
(1.2) |
where $ s\in (0, 1) $, $ N > 2 $s and $ \varepsilon > 0 $ is a small parameter. It is well known that the solution of (1.2) is closely related to the existence of solitary wave solutions for the following eqation
$ iεωt−ε2(−Δ)sω−V(x)ω+f(ω)=0,(x,t)∈RN×R, $
|
where $ i $ is the imaginary unit. $ (-\Delta)^{s} $ is the fractional Laplacian operator which arises in many areas such as physics, phase transitions, chemical reaction in liquids, finance and so on, see [1,6,18,22,27]. Additionally, Eq (1.2) is a fundamental equation of fractional quantum mechanics. For more details, please see [17,18].
Equation (1.2) was also investigated extensively under various hypotheses on the potential and the nonlinearity. For example, Floer and Weinstein [12] first considered the existence of single-peak solutions for $ N = 1 $ and $ f(t) = t^{3} $. They obtained a single-peak solution which concentrates around any given nondegenerate critical point of $ V $. Jin, Liu and Zhang [16] constructed a localized bound-state solution concentrating around an isolated component of the positive minimum point of $ V $, when the nonlinear term $ f(u) $ is a general critical nonlinearity. More related results can be seen in [5,7,10,13,14,26,43] and references therein. Recently, Zhang and Zhang [46] obtained the multiplicity and concentration of positive solutions for a class of fractional unbalanced double-phase problems by topological and variational methods. Related to (1.2) with $ s = 1 $, see [31,39] for quasilinear Schrödinger equations.
On the other hand, fractional p-Laplacian operator can be regarded as an extension of fractional Laplacian operator. Many researchers consider the following equation
$ εps(−Δ)spu+V(x)|u|p−2u=f(x,u). $
|
(1.3) |
When $ f(x, u) = A(x)|u|^{p^{*}_{s}-2}u + h(x, u) $, Li and Yang [21] obtained the existence and multiplicity of weak solutions by variational methods. When $ f(x, u) = \lambda f(x)|u|^{q-2}u + g(x)|u|^{r-2}u $, under suitable assumptions on nonlinearity and weight functions, Lou and Luo [19] established the existence and multiplicity of positive solutions via variational methods. With regard to the p-fractional Schrödinger-Kirchhoff, Song and Shi [29] considered the following equation with electromagnetic fields
$ {εpsM([u]ps,Aε)(−Δ)sp,Aεu+V(x)|u|p−2u=|u|p∗s−2u+h(x,|u|p)|u|p−2u,x∈RN,u(x)→0,as→∞. $
|
(1.4) |
They obtained the existence and multiplicity solutions for (1.4) by using the fractional version of concentration compactness principle and variational methods, see also [24,25,34,35,38,41] and references therein. Related to (1.3) with $ s = 1 $, see [15,23].
Recently, from a mathematical point of view, (fractional) elliptic systems have been the focus for many researchers, see [2,8,9,20,30,37,42,44,45]. As far as we know, there are few results concerned with the (fractional) p-Laplacian systems with a small parameter. In this direction, we cite the work of Zhang and Liu [40], who studied the following p-Laplacian elliptic systems
$ {−εpΔpu+V(x)|u|p−2u=K(x)|u|p∗−2u+Hu(u,v),x∈RN,−εpΔpv+V(x)|v|p−2v=K(x)|v|p∗−2v+Hv(u,v),x∈RN. $
|
(1.5) |
By using variational methods, they proved the existence of nontrivial solutions for (1.5) provided that $ \varepsilon $ is small enough. In [36], Xiang, Zhang and Wei investigated the following fractional p-Laplacian systems without a small parameter
$ {(−Δ)spu+a(x)|u|p−2u=Hu(x,u,v),x∈RN,(−Δ)sqv+b(x)|v|p−2v=Hv(x,u,v),x∈RN. $
|
(1.6) |
Under some suitable conditions, they obtained the existence of nontrivial and nonnegative solutions for (1.6) by using the mountain pass theorem.
Motivated by the aforementioned works, it is natural to ask whether system (1.5) has a nontrivial solution when the p-Laplacian operator is replaced by the fractional p-Laplacian operator. As far as we know, there is no related work in this direction so far. In this paper, we give an affirmative answer to this question considering the existence and multiplicity of standing wave solutions for (1.1).
Now, we present our results of this paper.
Theorem 1.1. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then for any $ \tau > 0 $, there is $ \Gamma_{\tau} > 0 $ such that if $ \varepsilon < \Gamma_{\tau} $, system (1.1) has at least one solution $ (u_{\varepsilon}, v_{\varepsilon})\rightarrow (0, 0) $ in $ W $ as $ \varepsilon\rightarrow 0 $, where $ W $ is stated later, satisfying:
$ μ−pμp[∫∫R2Nεps(|uε(x)−uε(y)|p|x−y|N+ps+|vε(x)−vε(y)|p|x−y|N+ps)dxdy+∫RNV(x)(|uε|p+|vε|p)dx]≤τεN $
|
and
$ sN∫RNK(x)(|uε|p∗s+|vε|p∗s)dx+μ−pp∫RNF(x,uε,vε)dx≤τεN. $
|
Theorem 1.2. Let $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{4}) $ hold. Then for any $ m\in \mathbb{N} $ and $ \tau > 0 $ there is $ \Gamma_{m\tau} > 0 $ such that if $ \varepsilon < \Gamma_{m\tau} $, system (1.1) has at least $ m $ pairs of solutions $ (u_{\varepsilon}, v_{\varepsilon}) $, which also satisfy the above estimates in Theorem 1.1. Moreover, $ (u_{\varepsilon}, v_{\varepsilon}) \rightarrow (0, 0) $ in $ W $ as $ \varepsilon\rightarrow 0 $.
Remark 1.1. On one hand, our results extend the results in [40], in which the authors considered the existence of solutions for perturbed $ p $-Laplacian system, i.e., system (1.1) with $ s = 1 $. On the other hand, our results also extend the results in [21] to a class of perturbed fractional $ p $-Laplacian system (1.1).
Remark 1.2. Compared with the results obtained by [12,13,14,15,16], when $ \varepsilon\rightarrow0 $, the solutions of Theorems 1.1 and 1.2 are close to trivial solutions.
In this paper, our goal is to prove the existence and multiplicity of standing wave solutions for (1.1) by variational approach. The main difficulty lies on the lack of compactness of the energy functional associated to system (1.1) because of unbounded domain $ \mathbb{R}^{N} $ and critical nonlinearity. To overcome this difficulty, we adopt some ideas used in [11] to prove that $ (PS)_{c} $ condition holds.
The rest of this article is organized as follows. In Section 2, we introduce the working space and restate the system in a equivalent form by replacing $ \varepsilon^{-ps} $ with $ \lambda $. In Section 3, we study the behavior of $ (PS)_{c} $ sequence. In Section 4, we complete the proof of Theorems 2.1 and 2.2, respectively.
To obtain the existence and multiplicity of standing wave solutions of system (1.1) for small $ \varepsilon $, we rewrite (1.1) in a equivalent form. Let $ \lambda = \varepsilon^{-ps} $, then system (1.1) can be expressed as
$ {(−Δ)spu+λV(x)|u|p−2u=λK(x)|u|p∗s−2u+λFu(x,u,v),x∈RN,(−Δ)spv+λV(x)|v|p−2v=λK(x)|v|p∗s−2v+λFv(x,u,v),x∈RN, $
|
(2.1) |
for $ \lambda\rightarrow +\infty $.
We introduce the usual fractional Sobolev space
$ Ws,p(RN):={u∈Lp(RN):[u]s,p<∞} $
|
equipped with the norm
$ ||u||s,p=(|u|p+[u]ps,p)1p, $
|
where $ |\cdot|_{p} $ is the norm in $ L^{p}(\mathbb{R}^{N}) $ and
$ [u]s,p=(∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)1p $
|
is the Gagliardo seminorm of a measurable function $ u: \mathbb{R}^{N}\rightarrow \mathbb{R} $. In this paper, we continue to work in the following subspace of $ W^{s, p}(\mathbb{R}^{N}) $ which is defined by
$ Wλ:={u∈Ws,p(RN):∫RNλV(x)|u|pdx<∞,λ>0} $
|
with the norm
$ ||u||λ=([u]ps,p+∫RNλV(x)|u|pdx)1p. $
|
Notice that the norm $ ||\cdot||_{s, p} $ is equivalent to $ ||\cdot||_{\lambda} $ for each $ \lambda > 0 $. It follows from $ (V_{0}) $ that $ W_{\lambda} $ continuously embeds in $ W^{s, p}(\mathbb{R}^{N}) $. For the fractional system (2.1), we shall work in the product space $ W = W_{\lambda}\times W_{\lambda} $ with the norm $ ||(u, v)||^{p} = ||u||^{p}_{\lambda} +||v||^{p}_{\lambda} $ for any $ (u, v)\in W $.
We recall that $ (u, v)\in W $ is a weak solution of system (2.1) if
$ ∫∫R2N|u(x)−u(y)|p−2(u(x)−u(y))(ϕ(x)−ϕ(y))|x−y|N+psdxdy+λ∫RNV(x)|u|p−2uϕdx+∫∫R2N|v(x)−v(y)|p−2(v(x)−v(y))(ψ(x)−ψ(y))|x−y|N+psdxdy+λ∫RNV(x)|v|p−2vψdx=λ∫RNK(x)(|u|p∗s−2uϕ+|v|p∗s−2vψ)dx+λ∫RN(Fu(x,u,v)ϕ+Fv(x,u,v)ψ)dx $
|
for all $ (\phi, \psi)\in W $.
Note that the energy functional associated with (2.1) is defined by
$ Φλ(u,v)=1p∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdy+1p∫RNλV(x)|u|pdx+1p∫∫R2N|v(x)−v(y)|p|x−y|N+psdxdy+1p∫RNλV(x)|v|pdx−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx=1p||(u,v)||p−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx. $
|
Clearly, it is easy to check that $ \Phi_{\lambda}\in C^{1}(W, \mathbb{R}) $ and its critical points are weak solution of system (2.1).
In order to prove Theorem 1.1 and 1.2, we only need to prove the following results.
Theorem 2.1. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then for any $ \tau > 0 $, there is $ \Lambda_{\tau} > 0 $ such that if $ \lambda\geq\Lambda_{\tau} $, system (2.1) has at least one solution $ (u_{\lambda}, v_{\lambda})\rightarrow (0, 0) $ in $ W $ as $ \lambda\rightarrow \infty $, satisfying:
$ μ−pμp[∫∫R2N(|uλ(x)−uλ(y)|p|x−y|N+ps+|vλ(x)−vλ(y)|p|x−y|N+ps)dxdy+∫RNλV(x)(|uλ|p+|vλ|p)dx]≤τλ1−Nps $
|
(2.2) |
and
$ sN∫RNK(x)(|uλ|p∗s+|vλ|p∗s)dx+μ−pp∫RNF(x,uλ,vλ)dx≤τλ−Nps. $
|
(2.3) |
Theorem 2.2. Assume that $ (V_{0}) $, $ (K_{0}) $ and $ (F_{1}) $–$ (F_{4}) $ hold. Then for any $ m\in \mathbb{N} $ and $ \tau > 0 $ there is $ \Lambda_{m\tau} > 0 $ such that if $ \lambda\geq\Lambda_{m\tau} $, system (2.1) has at least $ m $ pairs of solutions $ (u_{\lambda}, v_{\lambda}) $, which also satisfy the estimates in Theorem 2.1. Moreover, $ (u_{\lambda}, v_{\lambda}) \rightarrow (0, 0) $ in $ W $ as $ \lambda\rightarrow \infty $.
In this section, we are focused on the compactness of the functional $ \Phi_{\lambda} $.
Recall that a sequence $ \{(u_{n}, v_{n})\}\subset W $ is a $ (PS)_{c} $ sequence at level $ c $, if $ \Phi_{\lambda}(u_{n}, v_{n})\rightarrow c $ and $ \Phi'_{\lambda}(u_{n}, v_{n})\rightarrow 0 $. $ \Phi_{\lambda} $ is said to satisfy the $ (PS)_{c} $ condition if any $ (PS)_{c} $ sequence contains a convergent subsequence.
Proposition 3.1. Assume that the conditions $ (V_{0}), (K_{0}) $ and $ (F_{1}) $–$ (F_{3}) $ hold. Then there exists a constant $ \alpha > 0 $ independent of $ \lambda $ such that, for any $ (PS)_{c} $ sequence $ \{(u_{n}, v_{n})\}\subset W $ for $ \Phi_{\lambda} $ with $ (u_{n}, v_{n})\rightharpoonup (u, v) $, either $ (u_{n}, v_{n})\rightarrow (u, v) $ or $ c - \Phi_{\lambda}(u, v) \geq \alpha\lambda^{1-\frac{N}{ps}} $.
Corollary 3.1. Under the assumptions of Proposition 3.1, $ \Phi_{\lambda} $ satisfies the $ (PS)_{c} $ condition for all $ c < \alpha\lambda^{1-\frac{N}{ps}} $.
The proof of Proposition 3.1 consists of a series of lemmas which will occupy the rest of this section.
Lemma 3.1. Assume that $ (V_{0}), (K_{0}) $ and $ (F_{3}) $ are satisfied. Let $ \{(u_{n}, v_{n})\}\subset W $ be a $ (PS)_{c} $ sequence for $ \Phi_{\lambda} $. Then $ c\geq 0 $ and $ \{(u_{n}, v_{n})\} $ is bounded in $ W $.
Proof. Let $ \{(u_{n}, v_{n})\} $ be a $ (PS)_{c} $ sequence for $ \Phi_{\lambda} $, we obtain that
$ Φλ(un,vn)→c,Φ′λ(un,vn)→0,n→∞. $
|
By $ (K_{0}) $ and $ (F_{3}) $, we deduce that
$ c+o(1)||(un,vn)||=Φλ(un,vn)−1μ⟨Φ′λ(un,vn),(un,vn)⟩=(1p−1μ)||(un,vn)||p+λ(1μ−1p∗s)∫RNK(x)(|u|p∗s+|v|p∗s)dx+λ∫RN[1μ(Fu(x,un,vn)un+Fv(x,un,vn)vn)−F(x,un,vn)]dx≥(1p−1μ)||(un,vn)||p, $
|
(3.1) |
which implies that there exists $ M > 0 $ such that
$ ||(un,vn)||p≤M. $
|
Thus, $ \{(u_{n}, v_{n})\} $ is bounded in $ W $. Taking the limit in (3.1), we show that $ c\geq0 $. This completes the proof.
From the above lemma, there exists $ (u, v)\in W $ such that $ (u_{n}, v_{n})\rightharpoonup (u, v) $ in $ W $. Furthermore, passing to a subsequence, we have $ u_{n}\rightarrow u $ and $ v_{n}\rightarrow v $ in $ L^{\gamma}_{loc}(\mathbb{R}^{N}) $ for any $ \gamma\in [p, p_{s}^{*}) $ and $ u_{n}(x)\rightarrow u(x) $ and $ v_{n}(x)\rightarrow v(x) $ a.e. in $ \mathbb{R}^{N} $. Clearly, $ (u, v) $ is a critical point of $ \Phi_{\lambda} $.
Lemma 3.2. Let $ \{(u_{n}, v_{n})\} $ be stated as in Lemma 3.1 and $ \gamma\in [p, p_{s}^{*}) $. Then there exists a subsequence $ \{(u_{n_{j}}, v_{n_{j}})\} $ such that for any $ \varepsilon > 0 $, there is $ r_{\varepsilon} > 0 $ with
$ limsupj→∞∫Bj∖Br|unj|γdx≤ε,limsupj→∞∫Bj∖Br|vnj|γdx≤ε, $
|
for all $ r\geq r_{\varepsilon} $, where, $ B_{r}: = \{x\in \mathbb{R}^{N}: |x|\leq r\} $.
Proof. The proof is similar to the one of Lemma 3.2 of [11]. We omit it here.
Let $ \sigma: [0, \infty)\rightarrow [0, 1] $ be a smooth function satisfying $ \sigma(t) = 1 $ if $ t\leq 1 $, $ \sigma(t) = 0 $ if $ t\geq2 $. Define $ \overline{u}_{j}(x) = \sigma(\frac{2|x|}{j})u(x) $, $ \overline{v}_{j}(x) = \sigma(\frac{2|x|}{j})v(x) $. It is clear that
$ ||u−¯uj||λ→0and||v−¯vj||λ→0asj→∞. $
|
(3.2) |
Lemma 3.3. Let $ \{(u_{n_{j}}, v_{n_{j}})\} $ be stated as in Lemma 3.2, then
$ limj→∞∫RN[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx=0 $
|
and
$ limj→∞∫RN[Fv(x,unj,vnj)−Fv(x,unj−¯uj,vnj−¯vj)−Fv(x,¯uj,¯vj)]ψdx=0 $
|
uniformly in $ (\phi, \psi)\in W $ with $ ||(\phi, \psi)||\leq 1 $.
Proof. By (3.2) and the local compactness of Sobolev embedding, we know that for any $ r > 0 $,
$ limj→∞∫Br[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx=0, $
|
(3.3) |
uniformly for $ ||\phi||\leq 1 $. For any $ \varepsilon > 0 $, there exists $ r_{\varepsilon} > 0 $ such that
$ limsupj→∞∫Bj∖Br|¯uj|γdx≤∫RN∖Br|u|γdx≤ε, $
|
for all $ r\geq r_{\varepsilon} $, see [Lemma 3.2, 11]. From $ (F_{1}) $ and $ (F_{2}) $, we obtain
$ |Fu(x,u,v)|≤C0(|u|p−1+|v|p−1+|u|κ−1+|v|κ−1). $
|
(3.4) |
Thus, from (3.3), (3.4) and the Hölder inequality, we have
$ limsupj→∞∫RN[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx≤limsupj→∞∫Bj∖Br[Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj)]ϕdx≤C1limsupj→∞∫Bj∖Br[(|unj|p−1+|¯uj|p−1+|vnj|p−1+|¯vj|p−1)]ϕdx+≤C2limsupj→∞∫Bj∖Br[(|unj|κ−1+|¯uj|κ−1+|vnj|κ−1+|¯vj|κ−1)]ϕdx≤C1limsupj→∞[|unj|p−1Lp(Bj∖Br)+|¯uj|p−1Lp(Bj∖Br)+|vnj|p−1Lp(Bj∖Br)+|¯vj|p−1Lp(Bj∖Br)]|ϕ|p+C2limsupj→∞[|unj|κ−1Lκ(Bj∖Br)+|¯uj|κ−1Lκ(Bj∖Br)+|vnj|κ−1Lκ(Bj∖Br)+|¯vj|κLκ(Bj∖Br)]|ϕ|κ≤C3εp−1p+C4εκ−1κ, $
|
where $ C_{1}, C_{2}, C_{3} $ and $ C_{4} $ are positive constants. Similarly, we can deduce that the other equality also holds.
Lemma 3.4. Let $ \{(u_{n_{j}}, v_{n_{j}})\} $ be stated as in Lemma 3.2, the following facts hold:
$ (i)\; \Phi_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}})\rightarrow c - \Phi_{\lambda}(u, v); $
$(ii)\; \Phi'_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}}) \rightarrow 0 \; {\rm{in}} \; W^{-1}\; ({\rm{the \; dual\; space\; of\; W}}). $
Proof. $ (i) $ We have
$ Φλ(unj−¯uj,vnj−¯vj)=Φλ(unj,vnj)−Φλ(¯uj,¯vj)+λp∗s∫RNK(x)(|unj|p∗s−|unj−¯uj|p∗s−|¯uj|p∗s+|vnj|p∗s−|vnj−¯vj|p∗s−|¯vj|p∗s)dx+λ∫RN(F(x,unj,vnj)−F(x,unj−¯uj,vnj−¯vj)−F(x,¯uj,¯vj))dx. $
|
Using (3.2) and the Brézis-Lieb Lemma [4], it is easy to get
$ limj→∞∫RNK(x)(|unj|p∗s−|unj−¯uj|p∗s−|¯uj|p∗s+|vnj|p∗s−|vnj−¯vj|p∗s−|¯vj|p∗s)dx=0 $
|
and
$ limj→∞∫RN(F(x,unj,vnj)−F(x,unj−¯uj,vnj−¯vj)−F(x,¯uj,¯vj))dx=0. $
|
Using the fact that $ \Phi_{\lambda} (u_{n_{j}}, v_{n_{j}}) \rightarrow c $ and $ \Phi_{\lambda} (\overline{u}_{j}, \overline{v}_{{j}})\rightarrow \Phi_{\lambda}(u, v) $ as $ j\rightarrow \infty $, we have
$ Φλ(unj−¯uj,vnj−¯vj)→c−Φλ(u,v). $
|
$ (ii) $ We observe that for any $ (\phi, \psi)\in W $ satisfying $ ||(\phi, \psi)||\leq 1 $,
$ ⟨Φ′λ(unj−¯uj,vnj−¯vj),(ϕ,ψ)⟩=⟨Φ′λ(unj,vnj),(ϕ,ψ)⟩−⟨Φ′λ(¯uj,¯vj),(ϕ,ψ)⟩+λ∫RNK(x)[(|unj|p∗s−2unj−|unj−¯uj|p∗s−2(unj−¯uj)−|¯uj|p∗s−2¯uj)ϕ+(|vnj|p∗s−2vnj−|vnj−¯vj|p∗s−2(vnj−¯vj)−|¯vj|p∗s−2¯vj)ψ]dx+λ∫RN[(Fu(x,unj,vnj)−Fu(x,unj−¯uj,vnj−¯vj)−Fu(x,¯uj,¯vj))ϕ+(Fv(x,unj,vnj)−Fv(x,unj−¯uj,vnj−¯vj)−Fv(x,¯uj,¯vj))ψ]dx. $
|
It follows from a standard argument that
$ limj→∞∫RNK(x)(|unj|p∗s−2unj−|unj−¯uj|p∗s−2(unj−¯uj)−|¯uj|p∗s−2¯uj)ϕdx=0 $
|
and
$ limj→∞∫RNK(x)(|vnj|p∗s−2vnj−|vnj−¯vj|p∗s−2(vnj−¯vj)−|¯vj|p∗s−2¯vj)ψdx=0 $
|
uniformly in $ ||(\phi, \psi)||\leq1 $. By Lemma 3.3, we obtain $ \Phi'_{\lambda} (u_{n_{j}} - \overline{u}_{j}, v_{n_{j}} - \overline{v}_{{j}}) \rightarrow 0 $. We complete this proof.
Set $ u^{1}_{j} = u_{n_{j}} - \overline{u}_{j} $, $ v^{1}_{j} = v_{n_{j}} - \overline{v}_{j} $, then $ u_{n_{j}} -u = u^{1}_{j} + (\overline{u}_{j} - u) $, $ v_{n_{j}} -v = v^{1}_{j} + (\overline{v}_{j} - v) $. From (3.2), we have $ (u_{n_{j}}, v_{n_{j}})\rightarrow (u, v) $ if and only if $ (u^{1}_{j}, v^{1}_{j})\rightarrow (0, 0) $. By Lemma 3.4, one has along a subsequence that $ \Phi_{\lambda}(u^{1}_{j}, v^{1}_{j}) \rightarrow c -\Phi_{\lambda}(u, v) $ and $ \Phi'_{\lambda}(u^{1}_{j}, v^{1}_{j})\rightarrow 0 $.
Note that $ \langle \Phi'_{\lambda}(u^{1}_{j}, v^{1}_{j}), (u^{1}_{j}, v^{1}_{j}) \rangle = 0 $, by computation, we get
$ ∫∫R2N|u1j(x)−u1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|u1j|pdx+∫∫R2N|v1j(x)−v1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|v1j|pdx−λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx−λ∫RNF(x,u1j,v1j)dx=0 $
|
(3.5) |
Hence, by $ (F_{3}) $ and (3.5), we have
$ Φλ(u1j,v1j)−1p⟨Φ′λ(u1j,v1j),(u1j,v1j)⟩=(1p−1p∗s)λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+λ∫RN[1p(Fu(x,u1j,v1j)u1j+Fu(x,u1j,v1j)v1j)−F(x,u1j,v1j)]dx≥λsKminN∫RN(|u1j|p∗s+|v1j|p∗s)dx, $
|
where $ K_{min} = \inf_{x\in \mathbb{R}^{N}}K(x) > 0 $. So, it is easy to see that
$ |u1j|p∗sp∗s+|v1j|p∗sp∗s≤N(c−Φλ(u,v))λsKmin+o(1). $
|
(3.6) |
Denote $ V_{b}(x) = \max \{V(x), b\} $, where $ b $ is the positive constant from assumption of $ (V_{0}) $. Since the set $ V^{b} $ has finite measure and $ (u^{1}_{j}, v^{1}_{j})\rightarrow (0, 0) $ in $ L^{p}_{loc}\times L^{p}_{loc} $, we obtain
$ ∫RNV(x)(|u1j|p+|v1j|p)dx=∫RNVb(x)(|u1j|p+|v1j|p)dx+o(1). $
|
(3.7) |
By $ (K_{0}), (F_{1}) $ and $ (F_{2}) $, we can find a constant $ C_{b} > 0 $ such that
$ ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+∫RN(Fu(x,u1j,v1j)u1j+Fv(x,u1j,v1j)v1j)dx≤b(|u1j|pp+|v1j|pp)+Cb(|u1j|p∗sp∗s+|v1j|p∗sp∗s). $
|
(3.8) |
Let $ S $ is fractional Sobolev constant which is defined by
$ S|u|pp∗s≤∫∫R2N|u(x)−u(y)|p|x−y|N+psdxdyforallu∈Ws,p(RN). $
|
(3.9) |
Proof of Proposition 3.1. Assume that $ (u_{n_{j}}, v_{n_{j}})\nrightarrow(u, v) $, then $ \lim\inf_{j\rightarrow \infty}||(u^{1}_{j}, v^{1}_{j})|| > 0 $ and $ c -\Phi_{\lambda}(u, v) > 0 $.
From (3.5), (3.7), (3.8) and (3.9), we deduce
$ S(|u1j|pp∗s+|v1j|pp∗s)≤∫∫R2N|u1j(x)−u1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|u1j|pdx+∫∫R2N|v1j(x)−v1j(y)|p|x−y|N+psdxdy+∫RNλV(x)|v1j|pdx−∫RNλV(x)(|u1j|p+|v1j|p)dx=λ∫RNK(x)(|u1j|p∗s+|v1j|p∗s)dx+λ∫RN(Fu(x,u1j,v1j)u1j+Fv(x,u1j,v1j)v1j)dx−λ∫RNVb(x)(|u1j|p+|v1j|p)dx≤λCb(|u1j|p∗sp∗s+|v1j|p∗sp∗s)+o(1). $
|
Thus, by (3.6), we have
$ S≤λCb(|u1j|p∗sp∗s+|v1j|p∗sp∗s)p∗s−pp∗s+o(1)≤λCb(N(c−Φλ(u,v))λsKmin)sN+o(1), $
|
or equivalently
$ αλ1−Nps≤c−Φλ(u,v), $
|
where $ \alpha = \frac{s K_{min}}{N}(\frac{S}{C_{b}})^{\frac{N}{ps}} $. The proof is complete.
Lemma 4.1. Suppose that $ (V_{0}) $, $ (K_{0}), (F_{1}), (F_{2}) $ and $ (F_{3}) $ are satisfied, then the functional $ \Phi_{\lambda} $ satisfies the following mountain pass geometry structure:
$ (i) $ there exist positive constants $ \rho $ and $ a $ such that $ \Phi_{\lambda}(u, v)\geq a $ for $ ||(u, v)|| = \rho $;
$ (ii) $ for any finite-dimensional subspace $ Y\subset W $,
$ Φλ(u,v)→−∞,as(u,v)∈W,||(u,v)||→+∞. $
|
$ (iii) $ for any $ \tau > 0 $ there exists $ \Lambda_{\tau} > 0 $ such that each $ \lambda\geq \Lambda_{\tau} $, there exists $ \widetilde{\omega}_{\lambda}\in Y $ with $ ||\widetilde{\omega}_{\lambda}|| > \rho $, $ \Phi_{\lambda}(\widetilde{\omega}_{\lambda})\leq 0 $ and
$ maxt≥0Φλ(t˜ωλ)≤τλ1−Nps. $
|
Proof. $ (i) $ From $ (F_{1}), (F_{2}) $, we have for any $ \varepsilon > 0 $, there is $ C_{\varepsilon} > 0 $ such that
$ 1p∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx+∫RNF(x,u,v)dx≤ε|(u,v)|pp+Cε|(u,v)|p∗sp∗s. $
|
(4.1) |
Thus, combining with (4.1) and Sobolev inequality, we deduce that
$ Φλ(u,v)=1p||(u,v)||p−λp∗s∫RNK(x)(|u|p∗s+|v|p∗s)dx−λ∫RNF(x,u,v)dx≥1p||(u,v)||p−λεC5||(u,v)||p−λC6Cε||(u,v)||p∗s, $
|
where $ \varepsilon $ is small enough and $ C_{5}, C_{6} > 0 $, thus $ (i) $ is proved because $ p_{s}^{*} > p $.
$ (ii) $ By $ (F_{3}) $, we define the functional $ \Psi_{\lambda}\in C^{1}(W, \mathbb{R}) $ by
$ Ψλ(u,v)=1p||(u,v)||p−λl0∫RN(|u|d+|v|d)dx. $
|
Then
$ Φλ(u,v)≤Ψλ(u,v),forall(u,v)∈W. $
|
For any finite-dimensional subspace $ Y\subset W $, we only need to prove
$ Ψλ(u,v)→−∞,as(u,v)∈Y,||(u,v)||→+∞. $
|
In fact, we have
$ Ψλ(u,v)=1p||(u,v)||p−λl0|(u,v)|dd. $
|
Since all norms in a finite dimensional space are equivalent and $ p < d < p_{s}^{*} $, thus $ (ii) $ holds.
$ (iii) $ From Corollary 3.1, for $ \lambda $ large and $ c $ small enough, $ \Phi_{\lambda} $ satisfies $ (PS)_{c} $ condition. Thus, we will find a special finite dimensional-subspace by which we construct sufficiently small minimax levels for $ \Phi_{\lambda} $ when $ \lambda $ large enough.
Recall that
$ inf{∫R2N|φ(x)−φ(y)|p|x−y|N+psdxdy:φ∈C∞0(RN),|φ|d=1}=0,p<d<p∗s, $
|
see [40] for this proof. For any $ 0 < \varepsilon < 1 $, we can take $ \varphi_{\varepsilon}\in C^{\infty}_{0}(\mathbb{R}^{N}) $ with $ |\varphi_{\varepsilon}|_{d} = 1 $, supp $ \varphi_{\varepsilon}\subset B_{r_{\varepsilon}}(0) $ and $ [\varphi_{\varepsilon}]^{p}_{p, s} < \varepsilon $.
Let
$ ¯ωλ(x):=(ωλ(x),ωλ(x))=(φε(λ1psx),φε(λ1psx)). $
|
For $ t\geq 0 $, $ (F_{3}) $ imply that
$ Φλ(t¯ωλ)≤2tpp∫∫R2N|ωλ(x)−ωλ(y)|p|x−y|N+psdxdy+2tpp∫RNλV(x)|ωλ|pdx−λ∫RNF(x,tωλ,tωλ)dx≤λ1−Nps{2tpp∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+2tpp∫RNV(λ−1psx)|φε|pdx−2l0td∫RN|φε|ddx}≤λ1−Nps2l0(d−p)p(∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+∫RNV(λ−1psx)|φε|pdxl0d)dd−p. $
|
Indeed, for $ t > 0 $, define
$ g(t)=2tpp∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+2tpp∫RNλV(λ−1psx)|φε|pdx−2l0td∫RN|φε|ddx. $
|
It is easy to show that $ t_{0} = (\frac{\int\int_{\mathbb{R}^{2N}}\frac{|\varphi_{\varepsilon}(x)-\;\varphi_{\varepsilon}(y)|\;^{p}\;}{|x-y|^{N+ps}}\;\;\;dxdy + \int_{\mathbb{R}^{N}} V(\lambda^{-\frac{1}{ps}}x)\;|\;\varphi_{\varepsilon}\;|^{p} dx}{l_{0}d})^{\frac{1}{d-p}} $ is a maximum point of $ g $ and
$ maxt≥0g(t)=g(t0)=2l0(d−p)p(∫∫R2N|φε(x)−φε(y)|p|x−y|N+psdxdy+∫RNV(λ−1psx)|φε|pdxl0d)dd−p. $
|
Since $ V(0) = 0 $ and supp $ \varphi_{\varepsilon} \subset B_{r_{\varepsilon}}(0) $, there exists $ \Lambda_{\varepsilon} > 0 $ such that
$ V(λ−1psx)<ε|φε|pp,∀|x|≤rε,λ>Λε. $
|
Hence, we have
$ maxt≥0Φλ(t¯ωλ)≤2l0(d−p)p(1l0d)dd−p(2ε)dd−pλ1−Nps,∀λ>Λε. $
|
Choose $ \varepsilon > 0 $ such that
$ 2l0(d−p)p(1l0d)dd−p(2ε)dd−p≤τ, $
|
and taking $ \Lambda_{\tau} = \Lambda_{\varepsilon} $, from $ (ii) $, we can take $ \overline{t} $ large enough and define $ \widetilde{\omega}_{\lambda} = \overline{t}\overline{\omega}_{\lambda} $, then we have
$ Φλ(˜ωλ)<0andmax0≤t≤1Φλ(t˜ωλ)≤τλ1−Nps. $
|
Proof of Theorem 2.1. From Lemma 4.1, for any $ 0 < \tau < \alpha $, there exists $ \Lambda_{\tau} > 0 $ such that for $ \lambda\geq \Lambda_{\tau} $, we have
$ c=infη∈Γλmaxt∈[0,1]Φλ(η(t))≤τλ1−Nps, $
|
where $ \Gamma_{\lambda} = \{\eta\in C([0, 1], W): \eta(0) = 0, \eta(1) = \widetilde{\omega}_{\lambda}\} $. Furthermore, in virtue of Corollary 3.1, we obtain that $ (PS)_{c} $ condition hold for $ \Phi_{\lambda} $ at $ c $. Therefore, by the mountain pass theorem, there is $ (u_{\lambda}, v_{\lambda})\in W $ such that $ \Phi'_{\lambda}(u_{\lambda}, v_{\lambda}) = 0 $ and $ \Phi_{\lambda}(u_{\lambda}, v_{\lambda}) = c $.
Finally, we prove that $ (u_{\lambda}, v_{\lambda}) $ satisfies the estimates in Theorem 2.1.
Since $ (u_{\lambda}, v_{\lambda}) $ is a critical point of $ \Phi_{\lambda} $, there holds for $ \theta\in [p, p_{s}^{*}] $
$ τλ1−Nps≥Φλ(uλ,vλ)−1θ⟨Φ′λ(uλ,vλ),(uλ,vλ)⟩≥(1p−1θ)||(uλ,vλ)||p+λ(1θ−1p∗s)∫RNK(x)(|uλ|p∗s+|vλ|p∗s)dx+λ(μθ−1)∫RNF(x,uλ,vλ)dx. $
|
Taking $ \theta = \mu $, we get the estimate (2.2) and taking $ \theta = p $ yields the estimate (2.3).
To obtain the multiplicity of critical points, we will adopt the index theory defined by the Krasnoselski genus.
Proof of Theorem 2.2. Denote the set of all symmetric (in the sense that $ -A = A $) and closed subsets of $ A $ by $ \sum $. For any $ A\in\sum $ let gen $ (A) $ be the Krasnoselski genus and
$ i(A)=mink∈Υgen(k(A)⋂∂Bρ), $
|
where $ \Upsilon $ is the set of all odd homeomorphisms $ k\in C(W, W) $ and $ \rho $ is the number from Lemma 4.1. Then $ i $ is a version of Benci's pseudoindex [3]. $ (F_{4}) $ implies that $ \Phi_{\lambda} $ is even. Set
$ cλj:=infi(A)≥jsup(u,v)∈AΦλ(u,v),1≤j≤m. $
|
If $ c_{\lambda_{j}} $ is finite and $ \Phi_{\lambda} $ satisfies $ (PS)_{c_{\lambda_{j}}} $ condition, then we know that all $ c_{\lambda_{j}} $ are critical values for $ \Phi_{\lambda} $.
Step 1. We show that $ \Phi_{\lambda} $ satisfies $ (PS)_{c_{\lambda_{j}}} $ condition at all levels $ c_{\lambda_{j}} < \tau\lambda^{1- \frac{N}{ps}} $.
To complete the claim, we need to estimate the level $ c_{\lambda_{j}} $ in special finite-dimensional subspaces.
Similar to proof in Lemma 4.1, for any $ m\in \mathbb{N} $, $ \varepsilon > 0 $ and $ j = 1, 2, \cdot \cdot \cdot, m $, one can choose $ m $ functions $ \varphi^{j}_{\varepsilon}\in C^{\infty}_{0}(\mathbb{R}^{N}) $ with supp $ \varphi^{i}_{\varepsilon}\bigcap $ supp $ \varphi^{j}_{\varepsilon} = \emptyset $ if $ i\neq j $, $ |\varphi^{j}_{\varepsilon}|_{d} = 1 $ and $ [\varphi^{j}_{\varepsilon}]^{p}_{p, s} < \varepsilon $.
Let $ r^{m}_{\varepsilon } > 0 $ be such that supp $ \varphi^{j}_{\varepsilon}\subset B_{r^{m}_{\varepsilon }}(0) $. Set
$ ¯ωjλ(x):=(ωjλ(x),ωjλ(x))=(φjε(λ1psx),φjε(λ1psx)) $
|
and define
$ Fmλ:=Span{¯ω1λ,¯ω2λ,⋅⋅⋅,¯ωmλ}. $
|
Then $ i(F^{m}_{\lambda}) = \dim F^{m}_{\lambda} = m $. Observe that for each $ \widetilde{\omega} = \sum^{m}_{j = 1}t_{j}\overline{\omega}^{j}_{\lambda}\in F^{m}_{\lambda} $,
$ Φλ(˜ω)=m∑j=1Φλ(tj¯ωjλ) $
|
and for $ t_{j} > 0 $
$ Φλ(tj¯ωjλ)≤2tpjp∫∫R2N|ωjλ(x)−ωjλ(y)|p|x−y|N+psdxdy+2tpjp∫RNλV(x)|ωjλ|pdx−λ∫RNF(x,tjωjλ,tjωjλ)dx≤λ1−Nps{2tpjp∫∫R2N|φjε(x)−φjε(y)|p|x−y|N+psdxdy+2tpjp∫RNV(λ−1psx)|φjε|pdx−2l0tdj∫RN|φjε|ddx}. $
|
Set
$ ηε:=max{|φjε|pp:j=1,2,⋅⋅⋅,m}. $
|
Since $ V(0) = 0 $ and supp $ \varphi^{j}_{\varepsilon} \subset B_{r^{m}_{\varepsilon }}(0) $, there exists $ \Lambda_{m \varepsilon } > 0 $ such that
$ V(λ−1psx)<εηε,∀|x|≤rmε,λ>Λmε. $
|
Consequently, there holds
$ sup˜w∈FmλΦλ(˜w)≤ml0(2ε)dd−pλ1−Nps,∀λ>Λmε. $
|
Choose $ \varepsilon > 0 $ small that $ ml_{0}(2\varepsilon)^{\frac{d}{d-p}} < \tau $. Thus for any $ m\in N $ and $ \tau\in(0, \alpha) $, there exists $ \Lambda_{m \tau } = \Lambda_{ m \varepsilon} $ such that $ \lambda > \Lambda_{m\tau } $, we can choose a $ m $-dimensional subspace $ F^{m}_{\lambda} $ with $ \max \Phi_{\lambda}(F^{m}_{\lambda}) \leq \tau \lambda^{1 - \frac{N}{ps}} $ and
$ cλ1≤cλ2≤⋅⋅⋅≤sup˜w∈FmλΦλ(˜w)≤τλ1−Nps. $
|
From Corollary 3.1, we know that $ \Phi_{\lambda} $ satisfies the $ (PS) $ condition at all levels $ c_{\lambda_{j}} $. Then all $ c_{\lambda_{j}} $ are critical values.
Step 2. We prove that (2.1) has at least $ m $ pairs of solutions by the mountain-pass theorem.
By Lemma 4.1, we know that $ \Phi_{\lambda} $ satisfies the mountain pass geometry structure. From step 1, we note that $ \Phi_{\lambda} $ also satisfies $ (PS)_{c_{\lambda_{j}}} $ condition at all levels $ c_{\lambda_{j}} < \tau\lambda^{1- \frac{N}{ps}} $. By the usual critical point theory, all $ c_{\lambda_{j}} $ are critical levels and $ \Phi_{\lambda} $ has at least $ m $ pairs of nontrivial critical points satisfying
$ a≤Φλ(u,v)≤τλ1−Nps. $
|
Thus, (2.1) has at least $ m $ pairs of solutions. Finally, as in the proof of Theorem 2.1, we know that these solutions satisfy the estimates (2.2) and (2.3).
In this paper, we have obtained the existence and multiplicity of standing wave solutions for a class of perturbed fractional p-Laplacian systems involving critical exponents by variational methods. In the next work, we will extend the study to the case of perturbed fractional p-Laplacian systems with electromagnetic fields.
The author is grateful to the referees and the editor for their valuable comments and suggestions.
The author declares no conflict of interest.
[1] | H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, P. Bourne (2000) The protein data bank.Nucleic Acids Research 28: 235-242. |
[2] | J. R. Bilbao-Castro, C. O. S. Sorzano, I. García, J. J. Fernández (2004) Phan3D: design of biological phantoms in 3D electron microscopy.Bioinformatics 20: 3286-3288. |
[3] | K. Braig, Z. Otwinowski, R. Hegde, D. C. Boisvert, A. Joachimiak, A. L. Horwich, P. B. Sigler (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8á.Nature 371: 578-586. |
[4] | C. T. Chantler (2000) Detailed tabulation of atomic form factors, photoelectric absorption and scattering cross section, and mass attenuation coe cients in the vicinity of absorption edges in the soft x-rays (z=30-36, z=60-89, e=0.1kev-10kev), addressing convergence issues of earlier work.J. Phys. Chem. Ref. Data 29: 597-1048. |
[5] | M. S. Chapman, A. Trzynka, B. K. Chapman (2013) Atomic modeling of cryo-electron microscopy reconstructions - joint re nement of model and imaging parameters..J. Structural Biology 182: 10-21. |
[6] | Collaborative (1994) Collaborative computational project no. 4, The CCP4 Suite: Programs for Protein Crystallography.Acta Crystallo- graphica D50: 760-763. |
[7] | H. A. David, H. N. Nagaraja (2003) Order statistics.John Wiley and Sons . |
[8] | W. R. Dillon, M. Goldstein (1984) Multivariate analysis: Methods and applications.John Wiley, New York, USA . |
[9] | J. Frank (2006) Three-Dimensional Electron Microscopy of Macromolecular Assemblies: Visualization of Biological Molecules in Their Native State.Oxford Univ. Press, New York, USA . |
[10] | J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith (1996) SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related elds..J. Structural Biology 116: 190-199. |
[11] | P. Ge, Z. H. Zhou (2011) Hydrogen-bonding networks and rna bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches..Proc. Natl. Acad. Sci. USA 108: 9637-9642. |
[12] | G. Harauz, M. van Heel (1986) Exact lters for general geometry three dimensional reconstruction.Optik 73: 146-156. |
[13] | R. Henderson, A. Sali, M. L. Baker, B. Carragher, B. Devkota, K. H. Downing, E. H. Egelman, Z. Feng, J. Frank, N. Grigorieff, W. Jiang, S. J. Ludtke, O. Medalia, P. A. Penczek, P. B. Rosenthal, M. G. Rossmann, M. F. Schmid, G. F. Schr?üder, A. C. Steven, D. L. Stokes, J. D. Westbrook, W. Wriggers, H. Yang, J. Young, H. M. Berman, W. Chiu, G. J. Kleywegt, C. L. Lawson (2012) Outcome of the rst electron microscopy validation task force meeting..Structure 20: 205-214. |
[14] | B. Heymann, D. Belnap (2007) Bsoft: Image processing and molecular modeling for electron microscopy.J. Structural Biology 157: 3-18. |
[15] | S. Jonic, C. O. S. Sorzano, N. Boisset (2008) Comparison of single-particle analysis and electron tomography approaches: an overview.J. Microscopy 232: 562-579. |
[16] | D. C. Joy (1995) Monte Carlo Modeling for Electron Microscopy and Microanalysis.Oxford Univ. Press, London, England . |
[17] | E. Kirkland (1998) Advanced computing in electron microscopy.Plenum press, New York, USA . |
[18] | C. L. Lawson, M. L. Baker, C. Best, C. Bi, M. Dougherty, P. Feng, G. van Ginkel, B. Devkota, I. Lagerstedt, S. J. Ludtke, R. H. Newman, T. J. Old eld, I. Rees, G. Sahni, R. Sala, S. Velankar, J. Warren, J. D. Westbrook, K. Henrick, G. J. Kleywegt, H. M. Berman, W. Chiu (2011) Emdatabank.org: uni ed data resource for cryoem..Nucleic Acids Res 39: D456-D464. |
[19] | R. M. Lewitt (1992) Alternatives to voxels for image representation in iterative reconstruction algorithms.Physics in Medicine & Biology 37: 705-716. |
[20] | H. Lilliefors (1967) On the kolmogorov-smirnov test for normality with mean and variance unknown.J. American Statistical Association 62: 399-402. |
[21] | S. J. Ludtke, P. R. Baldwin, W. Chiu (1999) EMAN: Semiautomated software for high-resolution single-particle reconstructions.J. Structural Biology 128: 82-97. |
[22] | A. Oppenheim, R. Schafer, J. Buck (1999) Discrete-time signal processing, 2nd edition.Prentice-Hall . |
[23] | L. M. Peng (2005) Electron atomic scattering factors, debye-waller factors and the optical potential for high-energy electron diffraction.J. Electron Microscopy 54: 199-207. |
[24] | L. M. Peng, G. Ren, S. L. Dudarev, M. J. Whelan (1996) Robust parameterization of elastic and absorptive electron atomic scattering factors.Acta Crystallographica A52: 257-276. |
[25] | P. W. Rose, B. Beran, C. Bi, W. F. Bluhm, D. Dimitropoulos, D. S. Goodsell, A. Prlic, M. Quesada, G. B. Quinn, J. D. Westbrook, J. Young, B. Yukich, C. Zardecki, H. M. Berman, P. E. Bourne (2011) The rcsb protein data bank: redesigned web site and web services..Nucleic Acids Res 39: D392-D401. |
[26] | H. Rullgård, L.-G. Ofverstedt, S. Masich, B. Daneholt, O. Oktem (2011) Simulation of transmission electron microscope images of biological specimens..J Microsc 243: 234-256. |
[27] | S. H. W. Scheres (2012) A Bayesian view on cryo-EM structure determination..J. Molecular Biology 415: 406-418. |
[28] | G. H. Smith, R. E. Burge (1962) The analytical representation of atomic scattering amplitudes for electrons.Acta Crystallographica 15: 182-186. |
[29] | C. O. S. Sorzano, S. Jonic, M. Cottevieille, E. Larquet, N. Boisset, S. Marco (2007) 3D electron microscopy of biological nanomachines: principles and applications.European Biophysics Journal 36: 995-1013. |
[30] | C. O. S. Sorzano, R. Marabini, J. Velázquez-Muriel, J. R. Bilbao-Castro, S. H. W. Scheres, J. M. Carazo, A. Pascual-Montano (2004) XMIPP: A new generation of an open-source image processing package for electron microscopy.J. Structural Biology 148: 194-204. |
[31] | C. O. S. Sorzano, R. Marabini, N. Boisset, E. Rietzel, R. Schröder, G. T. Herman, J. M. Carazo (2001) The effect of overabundant projection directions on 3D reconstruction algorithms.J. Structural Biology 133: 108-118. |
[32] | J. C. H. Spence (1993) On the accurate measurement of structure-factor amplitudes and phases by electron diffraction.Acta Crystallographica A49: 231-260. |
[33] | P. A. Stadelmann (1987) EMS - a software package for electron diffraction analysis and HREM image simulation in materials science.Ultramicroscopy 21: 131-146. |
[34] | S. M. Stagg, J. Pulokas, D. Fellmann, A. Cheng, J. D. Quispe, S. P. Mallick, R. M. Avila, B. Carragher, C. S. Potter (2006) Automated cryoem data acquisition and analysis of 284,742 particles of groel.Nature 439: 234-238. |
[35] | F. Tama, O. Miyashita, C. L. Brooks (2004) Flexible multi-scale tting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis..J Mol Biol 337: 985-999. |
[36] | F. Tama, O. Miyashita, C. L. Brooks III (2004) Normal mode based exible tting of high-resolution structure into low-resolution experimental data from cryo-EM.J. Structural Biology 147: 315-326. |
[37] | E. Tjioe, K. Lasker, B. Webb, H. J. Wolfson, A. Sali (2011) Multi t: a web server for tting multiple protein structures into their electron microscopy density map..Nucleic Acids Res 39: W167-W170. |
[38] | M. Topf, K. Lasker, B. Webb, H. Wolfson, W. Chiu, A. Sali (2008) Protein structure tting and re nement guided by cryo-em density..Structure 16: 295-307. |
[39] | L. G. Trabuco, E. Villa, K. Mitra, J. Frank, K. Schulten (2008) Flexible tting of atomic structures into electron microscopy maps using molecular dynamics..Structure 16: 673-683. |
[40] | M. Unser, A. Aldroubi, M. Eden (1993) B-Spline signal processing: Part I - theory.IEEE Trans. Signal Processing 41: 821-832. |
[41] | M. Unser, A. Aldroubi, M. Eden (1993) B-Spline signal processing: Part II-E cient design and applications.IEEE Trans. Signal Processing 41: 834-848. |
[42] | M. van Heel, G. Harauz, E. V. Orlova, R. Schmidt, M. Schatz (1996) A new generation of the IMAGIC image processing system.J. Structural Biology 116: 17-24. |
[43] | M. Vulović, R. B. G. Ravelli, L. J. van Vliet, A. J. Koster, I. Lazić, U. Lücken, H. Rullgård, O. Öktem, B. Rieger (2013) Image formation modeling in cryo-electron microscopy..J Struct Biol 183: 19-32. |
[44] | A. J. C. Wilson (ed.) (1995) International tables for crystallography, 500.Kluwer Academics Publisher . |
[45] | W. Wriggers (2010) Using situs for the integration of multi-resolution structures..Biophys Rev 2: 21-27. |
[46] | W. Wriggers, R. A. Milligan, J. A. McCammon (1999) Situs: A package for docking crystal structures into low-resolution maps from electron microscopy.J. Structural Biology 125: 185-195. |
[47] | X. Zhang, L. Jin, Q. Fang, W. H. Hui, Z. H. Zhou (2010) 3.3 a cryo-em structure of a nonenveloped virus reveals a priming mechanism for cell entry..Cell 141: 472-482. |