Citation: Steven Rheiner, Younsoo Bae. Increased poly(ethylene glycol) density decreases transfection efficacy of siRNA/poly(ethylene imine) complexes[J]. AIMS Bioengineering, 2016, 3(4): 454-467. doi: 10.3934/bioeng.2016.4.454
[1] | Resnier P, Montier T, Mathieu V, et al. (2013) A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34: 6429-6443. doi: 10.1016/j.biomaterials.2013.04.060 |
[2] | Lachelt U, Wagner E (2015) Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 115: 11043-11078. doi: 10.1021/cr5006793 |
[3] | Choudhury SR, Hudry E, Maguire CA, et al. (2016) Viral vectors for therapy of neurologic diseases. Neuropharmacology: (In Press). |
[4] | Liu Y, Liu Z, Wang Y, et al. (2013) Investigation of the performance of PEG-PEI/ROCK-II-siRNA complexes for Alzheimer’s disease in vitro. Brain Res 1490: 43-51. doi: 10.1016/j.brainres.2012.10.039 |
[5] | Aliabadi HM, Maranchuk R, Kucharski C, et al. (2013) Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Control Release 172: 219-228. doi: 10.1016/j.jconrel.2013.08.012 |
[6] | Aliabadi HM, Landry B, Sun C, et al. (2012) Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials 33: 2546-2569. doi: 10.1016/j.biomaterials.2011.11.079 |
[7] | Guo P, Coban O, Snead NM, et al. (2010) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliver Rev 62: 650-666. doi: 10.1016/j.addr.2010.03.008 |
[8] | Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123: 1183-1189. doi: 10.1242/jcs.066399 |
[9] | Zhang S, Zhao B, Jiang H, et al. (2007) Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 123: 1-10. doi: 10.1016/j.jconrel.2007.07.016 |
[10] | Wightman L, Kircheis R, Rössler V, et al. (2001) Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med 3: 362-372. doi: 10.1002/jgm.187 |
[11] | Lee SY, Huh MS, Lee S, et al. (2010) Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J Control Release 141: 339-346. doi: 10.1016/j.jconrel.2009.10.007 |
[12] | Varkouhi AK, Scholte M, Storm G, et al. (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151: 220-228. doi: 10.1016/j.jconrel.2010.11.004 |
[13] | Fire A (1999) RNA-triggered gene silencing. Trends Genet 15: 358-363. doi: 10.1016/S0168-9525(99)01818-1 |
[14] | Fire A, Xu SQ, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. doi: 10.1038/35888 |
[15] | Lv H, Zhang S, Wang B, et al. (2006) Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 114: 100-109. doi: 10.1016/j.jconrel.2006.04.014 |
[16] | Zintchenko A, Philipp A, Dehshahri A, et al. (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjugate Chem 19: 1448-1455. doi: 10.1021/bc800065f |
[17] | Wen S, Zheng F, Shen M, et al. (2013) Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. J Appl Polym Sci 128: 3807-3813. doi: 10.1002/app.38444 |
[18] | Ogris M, Steinlein P, Carotta S, et al. (2001) DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci 3: 43-53. doi: 10.1208/ps030321 |
[19] | Alexis F, Pridgen E, Molnar LK, et al. (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5: 505-515. doi: 10.1021/mp800051m |
[20] | Rheiner S, Rychahou P, Bae Y (2015) Effects of the lipophilic core of polymer nanoassemblies on intracellular delivery and transfection of siRNA. Biophysics 2: 284-302. doi: 10.3934/biophy.2015.3.284 |
[21] | Pandey AP, Sawant KK (2016) Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater Sci Eng C Mater Biol Appl 68: 904-918. doi: 10.1016/j.msec.2016.07.066 |
[22] | Forsbach A, Müller C, Montino C, et al. (2011) Impact of delivery systems on siRNA immune activation and RNA interference. Immunol Lett 141: 169-180. |
[23] | Huang FW, Wang HY, Li C, et al. (2010) PEGylated PEI-based biodegradable polymers as non-viral gene vectors. Acta Biomater 6: 4285-4295. doi: 10.1016/j.actbio.2010.06.016 |
[24] | Fitzsimmons RE, Uludag H (2012) Specific effects of PEGylation on gene delivery efficacy of polyethylenimine: interplay between PEG substitution and N/P ratio. Acta Biomater 8: 3941-3955. doi: 10.1016/j.actbio.2012.07.015 |
[25] | Miteva M, Kirkbride KC, Kilchrist KV, et al. (2015) Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 38: 97-107. doi: 10.1016/j.biomaterials.2014.10.036 |
[26] | Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13: 105-119. doi: 10.2174/138920012798356934 |
[27] | Tang GP, Zeng JM, Gao SJ, et al. (2003) Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials 24: 2351-2362. doi: 10.1016/S0142-9612(03)00029-2 |
[28] | Mao S, Neu M, Germershaus O, et al. (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly (ethylene imine)-graft-poly (ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjugate Chem 17: 1209-1218. doi: 10.1021/bc060129j |
[29] | Petersen H, Fechner PM, Martin AL, et al. (2002) Polyethylenimine-graft-poly (ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug Chem 13: 845-854. doi: 10.1021/bc025529v |
[30] | Holland JW, Hui C, Cullis PR, et al. (1996) Poly (ethylene glycol)—lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochemistry 35: 2618-2624. doi: 10.1021/bi952000v |
[31] | Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83: 97-111. doi: 10.1078/0171-9335-00363 |