The generation of large volumes of agricultural and agroindustrial waste in the state of Tabasco represents a significant waste management challenge. We aimed to determine the bioenergy potential of five types of biomasses: Banana rachis, coconut shell, cocoa pod husk, sugarcane bagasse, and palm kernel shell, generated in agricultural and agroindustrial processes. This research involved characterizing and evaluating the energy quality of these biomasses by determining their calorific values and assessing their viability as fuel alternative sources. Additionally, we explored these biomasses' calorific value potential to reduce the inadequate disposal of wastes, reduce environmental impact, and provide alternative uses for these materials, which are typically discarded or have limited added value in the southeast region. The yield of waste generation per amount of production was estimated, with cocoa pod husk biomass and sugarcane bagasse, banana rachis, coconut shell, and palm kernel shell generating 0.685, 0.283, 0.16, 0.135, and 0.0595 kg of biomass per kg of crop, respectively. The bioenergy potential was evaluated through direct measurements using a calorimeter bomb, and indirect measurements using stoichiometric calculations. Four stoichiometric methods based on predictive equations were employed to determine the energy content of the biomasses from their elemental composition (Dulong, Friedl, Channiwala, Boie). The biomasses with the highest calorific values were coconut shell and cocoa pod husk, with values of 16.47 ± 0.24 and 16.02 ± 1.54 MJ/kg, respectively. Moreover, banana rachis had the lowest calorific value at 13.68 ± 3.22 MJ/kg. The calorific values of the sugarcane bagasse and palm kernel shell were 13.91 ± 0.98 and 15.29 ± 1.02, respectively. The factorial experimental design and statistical analysis revealed trends and magnitudes in the evaluation of energy determination methods and types of waste. The predictive equation of Dulong showed the highest similarity to the experimental values, especially for coconut shell (16.02 ± 0.08 MJ/kg). The metal content in biomasses such as palm kernel shell and coconut shell were below the limits established in ISO 17225:2014. Finally, our results indicated that coconut shell has superior characteristics for potential use as an alternative fuel, whereas banana rachis requires exploring alternative utilization options.
Citation: Nathaly A. Díaz Molina, José A. Sosa Olivier, José R. Laines Canepa, Rudy Solis Silvan, Donato A. Figueiras Jaramillo. Evaluation of the bioenergy potential of agricultural and agroindustrial waste generated in southeastern Mexico[J]. AIMS Energy, 2024, 12(5): 984-1009. doi: 10.3934/energy.2024046
The generation of large volumes of agricultural and agroindustrial waste in the state of Tabasco represents a significant waste management challenge. We aimed to determine the bioenergy potential of five types of biomasses: Banana rachis, coconut shell, cocoa pod husk, sugarcane bagasse, and palm kernel shell, generated in agricultural and agroindustrial processes. This research involved characterizing and evaluating the energy quality of these biomasses by determining their calorific values and assessing their viability as fuel alternative sources. Additionally, we explored these biomasses' calorific value potential to reduce the inadequate disposal of wastes, reduce environmental impact, and provide alternative uses for these materials, which are typically discarded or have limited added value in the southeast region. The yield of waste generation per amount of production was estimated, with cocoa pod husk biomass and sugarcane bagasse, banana rachis, coconut shell, and palm kernel shell generating 0.685, 0.283, 0.16, 0.135, and 0.0595 kg of biomass per kg of crop, respectively. The bioenergy potential was evaluated through direct measurements using a calorimeter bomb, and indirect measurements using stoichiometric calculations. Four stoichiometric methods based on predictive equations were employed to determine the energy content of the biomasses from their elemental composition (Dulong, Friedl, Channiwala, Boie). The biomasses with the highest calorific values were coconut shell and cocoa pod husk, with values of 16.47 ± 0.24 and 16.02 ± 1.54 MJ/kg, respectively. Moreover, banana rachis had the lowest calorific value at 13.68 ± 3.22 MJ/kg. The calorific values of the sugarcane bagasse and palm kernel shell were 13.91 ± 0.98 and 15.29 ± 1.02, respectively. The factorial experimental design and statistical analysis revealed trends and magnitudes in the evaluation of energy determination methods and types of waste. The predictive equation of Dulong showed the highest similarity to the experimental values, especially for coconut shell (16.02 ± 0.08 MJ/kg). The metal content in biomasses such as palm kernel shell and coconut shell were below the limits established in ISO 17225:2014. Finally, our results indicated that coconut shell has superior characteristics for potential use as an alternative fuel, whereas banana rachis requires exploring alternative utilization options.
[1] | FAO (2022) FAOSTAT, Land use, 2022. Available from: https://www.fao.org/faostat/en/#data/RL. |
[2] | FAO (2022) FAOSTAT, Crops and livestock products, 2022. Available from: https://www.fao.org/faostat/en/#data/QCL. |
[3] | FAO (2022) FAOSTAT, Value of agricultural production, 2022. Available from: https://www.fao.org/faostat/en/#data/QV. |
[4] | FAO (2022) FAOSTAT, Macro indicators, 2022. Available from: https://www.fao.org/faostat/en/#data/MK. |
[5] | SIAP (2022) Statistical yearbook of agricultural production, 2022. Available from: https://nube.siap.gob.mx/cierreagricola/. |
[6] | SIAP (2023) Performance of the agri-food GDP in the third quarter of 2023 (2022: Ⅲ–2023 Ⅲ). |
[7] | SEDEC (2023) State profile, 2023. Available from: https://tabasco.gob.mx/sites/default/files/users/sdettabasco/Perfil%20del%20Estado.pdf. |
[8] | INEGI Quarterly indicator of State economic activity (ITAEE), Tabasco. |
[9] | Chauhan A, Upadhyay S, Saini G, et al. (2022) Agricultural crop residue-based biomass in India: Potential assessment, methodology and key issues. Sustainable Energy Technol Assess 53: 102552.https://doi.org/10.1016/j.seta.2022.102552 doi: 10.1016/j.seta.2022.102552 |
[10] | Tauro R, García C, Skutsch M, et al. (2018) The potential for sustainable biomass pellets in Mexico: An analysis of energy potential, logistic costs and market demand. Renewable Sustainable Energy Rev 82: 380–389.https://doi.org/10.1016/j.rser.2017.09.036 doi: 10.1016/j.rser.2017.09.036 |
[11] | Peñaloza DF, Laiton LJ, Caballero DF, et al. (2012) Sciencimetric study of trends in the utilization of cocoa by-products (Theobroma cacao L.). Rev Espacio I+D, Innov Desarro 10: 83–94.https://doi.org/10.31644/IMASD.27.2021.a05 doi: 10.31644/IMASD.27.2021.a05 |
[12] | Balladares CA (2016) Physicochemical characterization of cocoa and coffee leachates from the Ecuadorian coast, as potential sources of bioethanol production. Available from: http://hdl.handle.net/10553/22931. |
[13] | Lu F, Rodriguez J, Van Damme I, et al. (2018) Valorisation strategies for cocoa pod husk and its fractions. Curr Opin Green Sustainable Chem 14: 80–88.https://doi.org/10.1016/j.cogsc.2018.07.007 doi: 10.1016/j.cogsc.2018.07.007 |
[14] | Vásquez ZS, de Carvalho Neto DP, Pereira GVM, et al. (2019) Biotechnological approaches for cocoa waste management: A review. Waste Manage 90: 72–83.https://doi.org/10.1016/j.wasman.2019.04.030 doi: 10.1016/j.wasman.2019.04.030 |
[15] | Campos R, Nieto KH, Oomah BD (2018) Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends Food Sci Technol 81: 172–184.https://doi.org/10.1016/j.tifs.2018.09.022 doi: 10.1016/j.tifs.2018.09.022 |
[16] | Fernandes ERK, Marangoni C, Souza O, et al. (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manage 75: 603–608.https://doi.org/10.1016/j.enconman.2013.08.008 doi: 10.1016/j.enconman.2013.08.008 |
[17] | Espina R, Barroca R, Abundo MLS (2022) The optimal high heating value of the torrefied coconut shells. Eng Technol Appl Sci Res 12: 8605–8610.https://doi.org/10.48084/etasr.4931 doi: 10.48084/etasr.4931 |
[18] | Trujillo AF, Arias LS (2013) Coconut, a renewable resource for the design of green materials. Entre Cienc Ing 7: 93–100. Available from:https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/637. |
[19] | Irawan A, US Latifah, DIP Meity (2017) Effect of torrefaction process on the coconut shell energy content for solid fuel, AIP Conf Proc 1826: 020010.https://doi.org/10.1063/1.4979226 doi: 10.1063/1.4979226 |
[20] | Triana O, León TS, Céspedes MI, et al. (2014) Characterization of sugarcane harvest residues stored in bulk. ICIDCA Sobre Deriv Caña Azúc 48: 65–70. Available from:https://www.redalyc.org/articulo.oa?id = 223131337010. |
[21] | Kalifa MA, Habtu NG, Jembere AL, et al. (2024) Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties. Curr Res Green Sustain Chem 8: 100395.https://doi.org/10.1016/j.crgsc.2023.100395 doi: 10.1016/j.crgsc.2023.100395 |
[22] | Schmitt CC, Moreira R, Neves RC, et al. (2020) From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Proc Technol 197: 106199.https://doi.org/10.1016/j.fuproc.2019.106199 doi: 10.1016/j.fuproc.2019.106199 |
[23] | Liew RK, Nam WL, Chong MY, et al. (2018) Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Proc Saf Environ Prot 115: 57–69.https://doi.org/10.1016/j.psep.2017.10.005 doi: 10.1016/j.psep.2017.10.005 |
[24] | Ohimain EI, Izah SC (2014) Energy self-sufficiency of smallholder oil palm processing in Nigeria. Renewable Energy 63: 426–431.https://doi.org/10.1016/j.renene.2013.10.007 doi: 10.1016/j.renene.2013.10.007 |
[25] | Syamsiro M, Saptoadi H, Tambunan BH, et al. (2012) A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy Sustainable Dev 16: 74–77.https://doi.org/10.1016/j.esd.2011.10.005 doi: 10.1016/j.esd.2011.10.005 |
[26] | Vásquez ZS, de Carvalho Neto DP, Pereira GVM, et al. (2019) Biotechnological approaches for cocoa waste management: A review. Waste Manage 90: 72–83.https://doi.org/10.1016/j.wasman.2019.04.030 doi: 10.1016/j.wasman.2019.04.030 |
[27] | Redondo C, Rodríguez M, Vallejo S, et al. (2020) Biorefinery of biomass of agro-industrial banana waste to obtain high-value biopolymers. Molecules 25: 3829.https://doi.org/10.3390/molecules25173829 doi: 10.3390/molecules25173829 |
[28] | da Silva JCG, Alves JLF, de Araujo WV, et al. (2019) Pyrolysis kinetics and physicochemical characteristics of skin, husk, and shell from green coconut wastes. Energy Ecol Environ 4: 125–132.https://doi.org/10.1007/s40974-019-00120-x doi: 10.1007/s40974-019-00120-x |
[29] | Sarkar JK, Wang Q (2020) Different pyrolysis process conditions of South Asian waste coconut shell and characterization of gas, bio-char, and bio-oil. Energies 13: 1970.https://doi.org/10.3390/en13081970 doi: 10.3390/en13081970 |
[30] | Nadzri SNIHA, Sultan MTH, Shah AUM, et al. (2022) A comprehensive review of coconut shell powder composites: Preparation, processing, and characterization. J Thermoplast Compos Mater 35: 2641–2664.https://doi.org/10.1177/089270572093080 doi: 10.1177/089270572093080 |
[31] | Dewajani H, Zamrudy W, Irfin Z, et al. (2023) Utilization of Indonesian sugarcane bagasse into bio asphalt through pyrolysis process using zeolite-based catalyst. Mater Today Proc 87: 383–389.https://doi.org/10.1016/j.matpr.2023.04.171 doi: 10.1016/j.matpr.2023.04.171 |
[32] | Sales A, Lima SA (2010) Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Waste Manage 30: 1114–1122.https://doi.org/10.1016/j.wasman.2010.01.026 doi: 10.1016/j.wasman.2010.01.026 |
[33] | Abnisa F, Daud WMAW, Husin WNW, et al. (2011) Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass Bioenergy 35: 1863–1872.https://doi.org/10.1016/j.biombioe.2011.01.033 doi: 10.1016/j.biombioe.2011.01.033 |
[34] | Sosa JA, Laines JR, García DS, et al. (2022) Activated carbon: A review of residual precursors, synthesis processes, characterization techniques, and applications in the improvement of biogas. Environ Eng Res 28: 220100.https://doi.org/10.4491/eer.2022.100 doi: 10.4491/eer.2022.100 |
[35] | Pérez M de L, Hernández JC, Bideshi DK, et al. (2020) Agave: a natural renewable resource with multiple applications. J Sci Food Agric 100: 5324–5333.https://doi.org/10.1002/jsfa.10586 doi: 10.1002/jsfa.10586 |
[36] | Borrega M, Hinkka V, Hörhammer H, et al. (2022) Utilizing and valorizing oat and barley straw as an alternative source of lignocellulosic fibers. Materials 15: 7826.https://doi.org/10.3390/ma15217826 doi: 10.3390/ma15217826 |
[37] | Ali AH, Wanderlind EH, Almerindo GI (2024) Activated carbon obtained from malt bagasse as a support in heterogeneous catalysis for biodiesel production. Renewable Energy 220: 119656.https://doi.org/10.1016/j.renene.2023.119656 doi: 10.1016/j.renene.2023.119656 |
[38] | Chung WJ, Shim J, Ravindran B (2022) Application of wheat bran-based biomaterials and nano-catalyst in textile wastewater. J King Saud Univ Sci 34: 101775.https://doi.org/10.1016/j.jksus.2021.101775 doi: 10.1016/j.jksus.2021.101775 |
[39] | Armynah B, Tahir D, Tandilayuk M, et al. (2019) Potentials of biochars derived from bamboo leaf biomass as energy sources: Effect of temperature and time of heating. Int J Biomater 2019: 1–9.https://doi.org/10.1155/2019/3526145 doi: 10.1155/2019/3526145 |
[40] | Sagastume A, Cabello JJ, Hens L, et al. (2020) The energy potential of agriculture, agroindustrial, livestock, and slaughterhouse biomass wastes through direct combustion and anaerobic digestion. The case of Colombia. J Clean Prod 269: 122317.https://doi.org/10.1016/j.jclepro.2020.122317 doi: 10.1016/j.jclepro.2020.122317 |
[41] | Mdhluli FT, Harding KG (2021) Comparative life-cycle assessment of maize cobs, maize stover and wheat stalks for the production of electricity through gasification vs traditional coal power electricity in South Africa. Clean Environ Syst 3: 100046.https://doi.org/10.1016/j.cesys.2021.100046 doi: 10.1016/j.cesys.2021.100046 |
[42] | Appiah NB, Li J, Rooney W, et al. (2019) A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis. Renewable Energy 143: 1121–1132.https://doi.org/10.1016/j.renene.2019.05.066 doi: 10.1016/j.renene.2019.05.066 |
[43] | Mazurkiewicz J, Marczuk A, Pochwatka P, et al. (2019) Maize straw as a valuable energetic material for giogas plant feeding. Materials 12: 3848.https://doi.org/10.3390/ma12233848 doi: 10.3390/ma12233848 |
[44] | Niju S, Swathika M, Balajii M (2020) Pretreatment of lignocellulosic sugarcane leaves and tops for bioethanol production. Lignocellulosic Biomass Liquid Biofuels, 301–324.https://doi.org/10.1016/B978-0-12-815936-1.00010-1 doi: 10.1016/B978-0-12-815936-1.00010-1 |
[45] | Chala B, Oechsner H, Latif S, et al. (2018) Biogas potential of coffee processing waste in Ethiopia. Sustainability 10: 2678.https://doi.org/10.3390/su10082678 doi: 10.3390/su10082678 |
[46] | Mekuria D, Diro A, Melak F, et al. (2022) Adsorptive removal of methylene blue dye using biowaste materials: Barley bran and enset midrib leaf. J Chem 2022: 1–13.https://doi.org/10.1155/2022/4849758 doi: 10.1155/2022/4849758 |
[47] | Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17: 429–438.https://doi.org/10.1007/s10311-018-0817-5 doi: 10.1007/s10311-018-0817-5 |
[48] | Prieto García F, Canales-Flores RA, Prieo-Méndez J, et al. (2022) Evaluation of three lignocellulose biomass materials (barley husk, corn cobs, agave leaves) as precursors of activated carbon. Rev Fac Cienc 11: 17–39.https://doi.org/10.15446/rev.fac.cienc.v11n1.97719 doi: 10.15446/rev.fac.cienc.v11n1.97719 |
[49] | Araújo L, Machado AR, Pintado M, et al. (2023) Toward a circular bioeconomy: Extracting cellulose from grape stalks. Eng Proc 86.https://doi.org/10.3390/ECP2023-14746 doi: 10.3390/ECP2023-14746 |
[50] | Martinelli FRB, Ribeiro FRC, Marvila MT, et al. (2023) A Review of the use of coconut fiber in cement composites. Polymers 15: 1309.https://doi.org/10.3390/polym15051309 doi: 10.3390/polym15051309 |
[51] | Elnagdy NA, Ragab TIM, Fadel MA, et al. (2024) Bioethanol production from characterized pre-treated sugarcane trash and Jatropha agrowastes. J Biotechnol 386: 28–41.https://doi.org/10.1016/j.jbiotec.2024.02.015 doi: 10.1016/j.jbiotec.2024.02.015 |
[52] | Darmayanti R, Wika Amini H, Fitri Rizkiana M, et al. (2019) Lignocellulosic material from main indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN J Eng Appl Sci 14: 3524–3534. |
[53] | Perea MA, Manzano F, Hernandez Q, et al. (2018) Peanut shell for energy: Properties and its potential to respect the environment. Sustainability 10: 3254.https://doi.org/10.3390/su10093254 doi: 10.3390/su10093254 |
[54] | Daud WMAW, Ali WSW (2004) Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresour Technol 93: 63–69.https://doi.org/10.1016/j.biortech.2003.09.015 doi: 10.1016/j.biortech.2003.09.015 |
[55] | Abnisa F, Arami A, Daud WMAW, et al. (2013) Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenergy Res 6: 830–840.https://doi.org/10.1007/s12155-013-9313-8 doi: 10.1007/s12155-013-9313-8 |
[56] | Sable H, Kumar V, Mishra R, et al. (2024) Bamboo stem derived biochar for biosorption of Cadmium (Ⅱ) ions from contaminated wastewater. Environ Nanotechnol Monit Manag 21: 100936.https://doi.org/10.1016/j.enmm.2024.100936 doi: 10.1016/j.enmm.2024.100936 |
[57] | Manríquez A, Sierra J, Muñoz P, et al. (2020) Analysis of urban agriculture solid waste in the frame of circular economy: Case study of tomato crop in integrated rooftop greenhouse. Sci Total Environ 734.https://doi.org/10.1016/j.scitotenv.2020.139375 doi: 10.1016/j.scitotenv.2020.139375 |
[58] | Soares IS, Perrechil F, Grandis A, et al. (2024) Cassava waste (stem and leaf) analysis for reuse. Food Chem Adv 4: 100675.https://doi.org/10.1016/j.focha.2024.100675 doi: 10.1016/j.focha.2024.100675 |
[59] | Gómez E, Roriz CL, Heleno SA, et al. (2021) Valorisation of black mulberry and grape seeds: Chemical characterization and bioactive potential. Food Chem 337: 127998.https://doi.org/10.1016/j.foodchem.2020.127998 doi: 10.1016/j.foodchem.2020.127998 |
[60] | Al Afif R, Pfeifer C, Pröll T (2020) Bioenergy recovery from cotton stalk. Advances Cotton Res. https://doi.org/10.5772/intechopen.88005 doi: 10.5772/intechopen.88005 |
[61] | Stavropoulos GG, Zabaniotou AA (2005) Production and characterization of activated carbons from olive-seed waste residue. Microporous Mesoporous Mater 82: 79–85.https://doi.org/10.1016/j.micromeso.2005.03.009 doi: 10.1016/j.micromeso.2005.03.009 |
[62] | Dominguez EL, Uttran A, Loh SK, et al. (2020) Characterisation of industrially produced oil palm kernel shell biochar and its potential as slow release nitrogen-phosphate fertilizer and carbon sink. Mater Today Proc 31: 221–227.https://doi.org/10.1016/j.matpr.2020.05.143 doi: 10.1016/j.matpr.2020.05.143 |
[63] | Toro JL, Carrillo ES, Bustos D, et al. (2019) Thermogravimetric characterization and pyrolysis of soybean hulls. Bioresour Technol Rep 6: 183–189.https://doi.org/10.1016/j.biteb.2019.02.009 doi: 10.1016/j.biteb.2019.02.009 |
[64] | Marafon AC, Salomon KR, Amorim ELC, et al. (2020) Use of sugarcane vinasse to biogas, bioenergy, and biofertilizer production. Sugarcane Biorefinery, Technol Perspectives, 179–194.https://doi.org/10.1016/B978-0-12-814236-3.00010-X doi: 10.1016/B978-0-12-814236-3.00010-X |
[65] | Sindhu R, Binod P, Pandey A, et al. (2019) Biofuel production from biomass. Current Dev Biotechnol Bioeng, 79–92.https://doi.org/10.1016/B978-0-444-64083-3.00005-1 doi: 10.1016/B978-0-444-64083-3.00005-1 |
[66] | Solís JA, Morales M, Ayala RC, et al. (2012) Obtaining activated carbon from agro-industrial waste and its evaluation in the removal of color from sugarcane juice. Tecnol, Cienc, Educ 27: 36–48. Available from:https://www.redalyc.org/articulo.oa?id = 48224413006. |
[67] | Medhat A, El-Maghrabi HH, Abdelghany A, et al. (2021) Efficiently activated carbons from corn cob for methylene blue adsorption. Appl Surface Sci Advances 3: 100037.https://doi.org/10.1016/j.apsadv.2020.100037 doi: 10.1016/j.apsadv.2020.100037 |
[68] | Abbey CYB, Duwiejuah AB, Quianoo AK (2023) Removal of toxic metals from aqueous phase using cacao pod husk biochar in the era of green chemistry. Appl Water Sci 13: 57.https://doi.org/10.1007/s13201-022-01863-5 doi: 10.1007/s13201-022-01863-5 |
[69] | Marín FJ, García RM, Barrezueta SA (2020) Results of the application of biochar obtained from banana and cocoa residues in corn cultivation. Rev Cient Agroecosist 8: 83–88. Available from:https://aes.ucf.edu.cu/index.php/aes/article/view/404. |
[70] | Pinzon DA, Adarme CA, Vargas LY, et al. (2022) Biochar as a waste management strategy for cadmium contaminated cocoa pod husk residues. Int JRecycl Org Waste Agric 11: 101–115.https://doi.org/10.30486/ijrowa.2021.1920124.1192 doi: 10.30486/ijrowa.2021.1920124.1192 |
[71] | Nosratpour MJ, Karimi K, Sadeghi M (2018) Improvement of ethanol and biogas production from sugarcane bagasse using sodium alkaline pretreatments. J Environ Manage 226: 329–339.https://doi.org/10.1016/j.jenvman.2018.08.058 doi: 10.1016/j.jenvman.2018.08.058 |
[72] | Santos CV, Lourenzani AEBS, Mollo M, et al. (2021) Study of the biogas potential generated from residue: peanut shells. Rev Bras Ciênc Ambient (Online) 56: 318–326.https://doi.org/10.5327/Z21769478765 |
[73] | Tsai WT, Lee MK, Chang YM (2006) Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J Anal Appl Pyrolysis 76: 230–237.https://doi.org/10.1016/j.jaap.2005.11.007 doi: 10.1016/j.jaap.2005.11.007 |
[74] | Zheng J, Yi W, Wang N (2008) Bio-oil production from cotton stalk. Energy Convers Manage 49: 1724–1730.https://doi.org/10.1016/j.enconman.2007.11.005 doi: 10.1016/j.enconman.2007.11.005 |
[75] | Kim SW, Koo BS, Lee DH (2014) Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Bioresour Technol 167: 425–432.https://doi.org/10.1016/j.biortech.2014.06.050 doi: 10.1016/j.biortech.2014.06.050 |
[76] | Robak K, Balcerek M (2018) Review of second-generation bioethanol production from residual biomass. Food Technol Biotechnol 56: 174–187.https://doi.org/10.17113/ftb.56.02.18.5428 doi: 10.17113/ftb.56.02.18.5428 |
[77] | Guerrero AB, Ballesteros I, Ballesteros M (2018) The potential of agricultural banana waste for bioethanol production. Fuel 213: 176–185.https://doi.org/10.1016/j.fuel.2017.10.105 doi: 10.1016/j.fuel.2017.10.105 |
[78] | Kaur M, Kaur M (2012) A review on utilization of coconut shell as coarse aggregates in mass concrete. Int J Appl Eng Res 7: 2063–2065. |
[79] | Tomar R, Kishore K, Singh Parihar H, et al. (2021) A comprehensive study of waste coconut shell aggregate as raw material in concrete. Mater Today Proc 44: 437–443.https://doi.org/10.1016/j.matpr.2020.09.754 doi: 10.1016/j.matpr.2020.09.754 |
[80] | Chávez V, Valencia A, Córdova C, et al. (2017) Banana stem leachates: Obtaining and potential uses. Cuad Biodivers 53: 1–8.https://doi.org/10.14198/cdbio.2017.53.01 doi: 10.14198/cdbio.2017.53.01 |
[81] | Abdul Wahid FRA, Saleh S, Abdul Samad NAF (2017) Estimation of higher heating value of torrefied palm oil wastes from proximate analysis. Energy Proc 138: 307–312.https://doi.org/10.1016/j.egypro.2017.10.102 doi: 10.1016/j.egypro.2017.10.102 |
[82] | Florian TDM, Villani N, Aguedo M, et al. (2019) Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind Crops Prod 132: 269–274.https://doi.org/10.1016/j.indcrop.2019.02.022 doi: 10.1016/j.indcrop.2019.02.022 |
[83] | Granados DA, Velásquez HI, Chejne F (2014) Energetic and exergetic evaluation of residual biomass in a torrefaction process. Energy 74: 181–189.https://doi.org/10.1016/j.energy.2014.05.046 doi: 10.1016/j.energy.2014.05.046 |
[84] | Jirón EG, Rodríguez K, Bernal C (2020) Cellulose nanofiber production from banana rachis. IJESC 10: 24683–24689. |
[85] | Balogun AO, Lasode OA, McDonald AG (2018) Thermochemical and pyrolytic analyses of Musa spp. residues from the rainforest belt of Nigeria. Environ Prog Sustainable Energy 37: 1932–1941.https://doi.org/10.1002/ep.12869 doi: 10.1002/ep.12869 |
[86] | Meramo SI, Ojeda KA, Sanchez E (2019) Environmental and safety assessments of industrial production of levulinic acid via acid-catalyzed dehydration. ACS Omega 4: 22302–22312.https://doi.org/10.1021/acsomega.9b02231 doi: 10.1021/acsomega.9b02231 |
[87] | Guerrero AB, Aguado PL, Sánchez J, et al. (2016) GIS-Based assessment of banana residual biomass potential for ethanol production and power generation: A case study. Waste Biomass Valor 7: 405–415.https://doi.org/10.1007/s12649-015-9455-3 doi: 10.1007/s12649-015-9455-3 |
[88] | Ozyuguran A, Akturk A, Yaman S (2018) Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 214: 640–646.https://doi.org/10.1016/j.fuel.2017.10.082 doi: 10.1016/j.fuel.2017.10.082 |
[89] | Titiloye JO, Abu Bakar MS, Odetoye TE (2013) Thermochemical characterisation of agricultural wastes from West Africa. Ind Crops Prod 47: 199–203.https://doi.org/10.1016/j.indcrop.2013.03.011 doi: 10.1016/j.indcrop.2013.03.011 |
[90] | Ghysels S, Acosta N, Estrada A, et al. (2020) Integrating anaerobic digestion and slow pyrolysis improves the product portfolio of a cocoa waste biorefinery. Sustainable Energy Fuels 4: 3712–3725.https://doi.org/10.1039/D0SE00689K doi: 10.1039/D0SE00689K |
[91] | Akinola AO, Eiche JF, Owolabi PO, et al. (2018) Pyrolytic analysis of cocoa pod for biofuel production. Niger J Technol 37: 1026.https://doi.org/10.4314/njt.374.1866 doi: 10.4314/njt.374.1866 |
[92] | Londoño-Larrea P, Villamarin-Barriga E, García AN, et al. (2022) Study of cocoa pod husks thermal decomposition. Appl Sci 12: 9318.https://doi.org/10.3390/app12189318 doi: 10.3390/app12189318 |
[93] | Tsai C, Tsai W, Liu S, et al. (2018) Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Convers Biorefin 8: 237–243.https://doi.org/10.1007/s13399-017-0259-5 doi: 10.1007/s13399-017-0259-5 |
[94] | Adjin M, Asiedu N, Dodoo D, et al. (2018) Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crops Prod 119: 304–312.https://doi.org/10.1016/j.indcrop.2018.02.060 doi: 10.1016/j.indcrop.2018.02.060 |
[95] | Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81: 1051–1063.https://doi.org/10.1016/S0016-2361(01)00131-4 doi: 10.1016/S0016-2361(01)00131-4 |
[96] | Kabir R, Anwar S, Yusup S, et al. (2022) Exploring the potential of coconut shell biomass for charcoal production. Ain Shams Eng J 13: 101499.https://doi.org/10.1016/j.asej.2021.05.013 doi: 10.1016/j.asej.2021.05.013 |
[97] | Borel LDMS, de Lira TS, Ataíde CH, et al. (2021) Thermochemical conversion of coconut waste: Material characterization and identification of pyrolysis products. J Therm Anal Calorim 143: 637–646.https://doi.org/10.1007/s10973-020-09281-y doi: 10.1007/s10973-020-09281-y |
[98] | Said M, John G, Mhilu C, et al. (2015) The study of kinetic properties and analytical pyrolysis of coconut shells. J Renewable Energy 2015: 1–8.https://doi.org/10.1155/2015/307329 doi: 10.1155/2015/307329 |
[99] | Rout T, Pradhan D, Singh RK, et al. (2016) Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng 4: 3696–3705.https://doi.org/10.1016/j.jece.2016.02.024 doi: 10.1016/j.jece.2016.02.024 |
[100] | Gani A, Erdiwansyah, Desvita H, et al. (2024) Comparative analysis of HHV and LHV values of biocoke fuel from palm oil mill solid waste. Case Stud Chem EnvironEng 9: 100581.https://doi.org/10.1016/j.cscee.2023.100581 doi: 10.1016/j.cscee.2023.100581 |
[101] | Nizamuddin S, Jayakumar NS, Sahu JN, et al. (2015) Hydrothermal carbonization of oil palm shell. Korean J Chem Eng 32: 1789–1797.https://doi.org/10.1007/s11814-014-0376-9 doi: 10.1007/s11814-014-0376-9 |
[102] | Kim SJ, Jung SH, Kim JS (2010) Fast pyrolysis of palm kernel shells: Influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Bioresour Technol 101: 9294–9300.https://doi.org/10.1016/j.biortech.2010.06.110 doi: 10.1016/j.biortech.2010.06.110 |
[103] | Uemura Y, Omar WN, Tsutsui T, et al. (2011) Torrefaction of oil palm wastes. Fuel 90: 2585–2591.https://doi.org/10.1016/j.fuel.2011.03.021 doi: 10.1016/j.fuel.2011.03.021 |
[104] | Chang G, Huang Y, Xie J, et al. (2016) The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manage 124: 587–597.https://doi.org/10.1016/j.enconman.2016.07.038 doi: 10.1016/j.enconman.2016.07.038 |
[105] | Marrugo G, Valdés CF, Chejne F (2016) Characterization of colombian agroindustrial biomass residues as energy resources. Energy Fuels 30: 8386–8398.https://doi.org/10.1021/acs.energyfuels.6b01596 doi: 10.1021/acs.energyfuels.6b01596 |
[106] | Ma Z, Chen D, Gu J, et al. (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manage 89: 251–259.https://doi.org/10.1016/j.enconman.2014.09.074 doi: 10.1016/j.enconman.2014.09.074 |
[107] | Liew RK, Chong MY, Osazuwa OU, et al. (2018) Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Res Chem Intermed 44: 3849–3865.https://doi.org/10.1007/s11164-018-3388-y doi: 10.1007/s11164-018-3388-y |
[108] | Athira G, Bahurudeen A, Appari S (2021) Thermochemical conversion of sugarcane Bagasse: composition, reaction kinetics, and characterisation of by-products. Sugar Tech 23: 433–452.https://doi.org/10.1007/s12355-020-00865-4 doi: 10.1007/s12355-020-00865-4 |
[109] | Kanwal S, Chaudhry N, Munir S, et al. (2019) Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manage 88: 280–290.https://doi.org/10.1016/j.wasman.2019.03.053 doi: 10.1016/j.wasman.2019.03.053 |
[110] | Chen WH, Ye SC, Sheen HK (2012) Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour Technol 118: 195–203.https://doi.org/10.1016/j.biortech.2012.04.101 doi: 10.1016/j.biortech.2012.04.101 |
[111] | Iryani DA, Kumagai S, Nonaka M, et al. (2017) Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valor 8: 1941–1951.https://doi.org/10.1007/s12649-017-9898-9 doi: 10.1007/s12649-017-9898-9 |
[112] | Beta San Miguel Beta San Miguel, Responsabilidad BSM. Available from: https://www.bsm.com.mx/resp_ambiental.html. |
[113] | Oleopalma (2022) 2022 Sustainable ability report. |
[114] | American Society of Testing Methods (2002) ASTM D-2974, standard test methods for moisture, ash, and organic matter of peat and other organic soils, 2002. Available from: https://www.astm.org/d2974-14.html. |
[115] | Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy 28: 499–507.https://doi.org/10.1016/j.biombioe.2004.11.008 doi: 10.1016/j.biombioe.2004.11.008 |
[116] | Friedl A, Padouvas E, Rotter H, et al. (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544: 191–198.https://doi.org/10.1016/j.aca.2005.01.041 doi: 10.1016/j.aca.2005.01.041 |
[117] | Wang C, Deng X, Xiang W, et al. (2020) Calorific value variations in each component and biomass-based energy accumulation of red-heart Chinese fir plantations at different ages. Biomass Bioenergy 134: 105467.https://doi.org/10.1016/j.biombioe.2020.105467 doi: 10.1016/j.biombioe.2020.105467 |
[118] | Yin CY (2011) Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90: 1128–1132.https://doi.org/10.1016/j.fuel.2010.11.031 doi: 10.1016/j.fuel.2010.11.031 |
[119] | Environmental Protection Agency USA (1996) EPA, METHOD 6010B, Inductively coupled plasma-atomic emission spectrometry, 1996. |
[120] | Husain Z, Zainac Z, Abdullah Z (2002) Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass Bioenergy 22: 505–509.https://doi.org/10.1016/S0961-9534(02)00022-3 doi: 10.1016/S0961-9534(02)00022-3 |
[121] | Sosa JA, Laines JR, Guerrero D, et al. (2022) Bioenergetic valorization of Sargassum fluitans in the Mexican Caribbean: The determination of the calorific value and washing mechanism. AIMS Energy 10: 45–63.https://doi.org/10.3934/energy.2022003 doi: 10.3934/energy.2022003 |
[122] | Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20: 105–111.https://doi.org/10.1260/014459802760170420 doi: 10.1260/014459802760170420 |
[123] | López MI, Sosa JA, Laines JR, et al. (2023) Aerobic biotransformation of Sargassum fluitans in combination with sheep manure: optimization of control variables. Chem Ecol 39: 823–842.https://doi.org/10.1080/02757540.2023.2263427 doi: 10.1080/02757540.2023.2263427 |
[124] | Vergara GR (2022) Physical and energetic characterization of the fibrous residue from the processing of African palm by varying the percentage of humidity for bioenergy use in the Quevepalma company. Available from: http://repositorio.espe.edu.ec/handle/21000/28641. |
[125] | Huaraca JN (2022) Determination of the calorific value of agroindustrial waste from wheat husk and barley straw enriched with cellulose nanoparticles as an energy alternative. Available from: http://dspace.espoch.edu.ec/handle/123456789/20236. |