Citation: Yong-Qiang Liu, Sri Suhartini, Liang Guo, Yeping Xiong. Improved biological wastewater treatment and sludge characteristics by applying magnetic field to aerobic granules[J]. AIMS Bioengineering, 2016, 3(4): 412-424. doi: 10.3934/bioeng.2016.4.412
[1] | Cakmak T, Cakmak ZE, Dumlupinar R, et al. (2012) Analysis of apoplastic and symplastic antioxidant system in shallot leaves: Impacts of weak static electric and magnetic field. J Plant Physiol 169: 1066–1073. doi: 10.1016/j.jplph.2012.03.011 |
[2] | Nawrotek P, Fijalkowski K, Struk M, et al. (2014) Effects of 50 Hz rotating magnetic field on the viability of Escherichia coli and Staphylococcus aureus. Electromagn Biol Medicine 33: 29–34. |
[3] | Utsunomiya T, Yamane Y, Watanabe M, et al. (2003) Stimulation of Porphyrin Production by Application of an External Magnetic Field to a Photosynthetic Bacterium. Rhodobacter sphaeroides J Biosci Eng 95: 401–404. |
[4] | Chen H, Li X (2008) Effect of static magnetic field on synthesis of polyhydroxyalkanoates from different short-chain fatty acids by activated sludge. Bioresour Technol 99: 5538–5544 . doi: 10.1016/j.biortech.2007.10.047 |
[5] | Lebkowska M, Rutkowska-Narozniak A, Pajor E, et al. (2011) Effect of a static magnetic field on formaldehyde biodegradation in wastewater by activated sludge. Bioresour Technol 102: 8777–8782. doi: 10.1016/j.biortech.2011.07.040 |
[6] | Kriklavova L, Truhlar M, Skodovaa P, et al. (2014) Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor. Bioresour Technol 167: 510–513. doi: 10.1016/j.biortech.2014.06.060 |
[7] | Pospisilova D, Schreiberova O, Jirku V, et al. (2015) Effects of Magnetic Field on Phenol Biodegradation and Cell Physiochemical Properties of Rhodococcus erythropolis. Biorem J 19: 201–206. doi: 10.1080/10889868.2015.1029114 |
[8] | Zaidi N S, Sohaili J, Muda K, et al. (2014) Magnetic Field Application and its Potential in Water and Wastewater Treatment Systems. Sep Purif Rev 43: 206–240. doi: 10.1080/15422119.2013.794148 |
[9] | Filipic J, Kraigher B, Tepus B, et al. (2015) Effect of Low-Density Static Magnetic Field on the Oxidation of Ammonium by Nitrosomonas europaea and by Activated Sludge in Municipal Wastewater. Food Technol Biotechnol 53: 201–206. |
[10] | Moura AAO, Terra NM, Borges WS, et al. (2015) Influence of an electromagnetic field on the bioreduction of chromium (VI) using a mixed culture of microorganisms, Environ Prog Sustain Energy 34: 88–98. |
[11] | Hattori S, Watanabe M, Osono H, et al. (2001) Effects of an external magnetic field on the flock size and sedimentation of activated sludge. World J Microbiol Biotechnol 17: 833–838. doi: 10.1023/A:1013811114017 |
[12] | Tomska A, Wolny L (2008) Enhancement of biological wastewater treatment by magnetic field exposure. Desalination 222: 368–373. doi: 10.1016/j.desal.2007.01.144 |
[13] | Wang XH, Diao MH, Yang Y, et al. (2012) Enhanced aerobic nitrifying granulation by static magnetic field. Bioresour Technol 110: 105–110. doi: 10.1016/j.biortech.2012.01.108 |
[14] | Kong Y, Liu YQ, Tay JH, et al. (2009) Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme Microb Technol 45: 379–383. doi: 10.1016/j.enzmictec.2009.06.014 |
[15] | Chen FY, Liu YQ, Tay JH, et al. (2011) Operational strategies for nitrogen removal in granular sequencing batch reactor. J Hazard Mater 189: 342–348. doi: 10.1016/j.jhazmat.2011.02.041 |
[16] | APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington DC, USA. |
[17] | Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1016/0003-2697(76)90527-3 |
[18] | Dubois M, Gilles KA, Hamilton JK, et al. (1956) Calorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356. doi: 10.1021/ac60111a017 |
[19] | Lan H, Chen R, Ma P, et al. (2015) Cultivation and characteristics of micro-aerobic activated sludge with weak magnetic field. Desalination Water Treatment 53: 27–35. doi: 10.1080/19443994.2013.834272 |
[20] | Liu YQ, Tay JH (2015) Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate. Water Res 80: 256–266. doi: 10.1016/j.watres.2015.05.015 |
[21] | Liu YQ, Kong YH, Tay JH, et al. (2011) Enhancement of start-up of pilot-scale SBR fed with real wastewater. Sep Purif Technol 82: 190–196. doi: 10.1016/j.seppur.2011.09.014 |
[22] | Lebkowska M, Narożniak-Rutkowska A, Pajor E (2013) Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea–formaldehyde resin production by activated sludge. Bioresour Technol 132: 78–83. doi: 10.1016/j.biortech.2013.01.020 |
[23] | Yavuz H, Celebi SS (2000) Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme Microb Technol 26: 22–27. doi: 10.1016/S0141-0229(99)00121-0 |
[24] | Hu X, Dong HY, Qiu ZN, et al. (2007) The effect of high magnetic field characterized by kinetics: Enhancing the biodegradation of acid red 1 with a strain of Bacillus sp. Internat Biodeter Biodegrad 60: 293–298. |
[25] | Filipic J, Kraigher B, Tepus B, et al. (2012) Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria Escherichia coli and Pseudomonas putida. Bioresour Technol 120: 225–232. doi: 10.1016/j.biortech.2012.06.023 |
[26] | Niu C, Geng J, Ren H, et al. (2013) The strengthening effect of a static magnetic field on activated sludge activity at low temperature. Bioresour Technol 150: 156–162. |
[27] | Neyens E, Baeyens J, Dewil R, et al. (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106B: 83–92. |
[28] | Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65: 143–148. |
[29] | Zhou Y, Li J, Wei S (2011) Dewaterability of aerobic granular sludge. Appl Mechanics Mater 90–93: 2944–2948. |
[30] | Drews A (2010) Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures. J Membr Sci 363: 1–28. doi: 10.1016/j.memsci.2010.06.046 |
[31] | Liu Y, Wang ZW, Liu YQ, et al. (2005) A generalized model for settling velocity of aerobic granular sludge. Biotechnol Prog 21: 621–626. |
[32] | Van Loosdrecht M, Lin Y, Lotti T (2016) Extracellular polymers from granular sludge as sizing agents. US patent 20160230345. |
[33] | Barker DJ, Stuckey DC (1999) A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res 33: 3063–3082. doi: 10.1016/S0043-1354(99)00022-6 |
[34] | Han S, Jin W, Chen Y, et al. (2016) Abomohra A.E, Enhancement of lipid production of Chlorella Pyrenoidosa cultivated in municipal wastewater by magnetic treatment. Appl Biochem Biotechnol doi:10.1007/s12010-016-2151-3. |