Citation: Joe A. Lemire, Marc A. Demeter, Iain George, Howard Ceri, Raymond J. Turner. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment[J]. AIMS Bioengineering, 2015, 2(4): 387-403. doi: 10.3934/bioeng.2015.4.387
[1] | Allard AS, Neilson AH (1997) Bioremediation of Organic Waste Sites: A Critical Review of Microbiological Aspects. Int Biodeter Biodegr 39: 253-285. doi: 10.1016/S0964-8305(97)00021-8 |
[2] | Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80: 1-33. doi: 10.1016/S0168-1656(00)00229-7 |
[3] | Kumar A, Bisht BS, Joshi VD, et al. (2011) Review on Bioremediation of Polluted Environment-A Management Tool. Int J Environ Sci 1: 1079-1093. |
[4] | Azizi S, Valipour A, Sithebe T (2013) Evaluation of Different Wastewater Treatment Processes and Development of a Modified Attached Growth Bioreactor as a Decentralized Approach for Small Communities. Sci World J 2013: 1-8. |
[5] | Borkar RP, Gulhane ML, Kotangale AJ (2013) Moving Bed Biofilm Reactor—A New Perspective in Wastewater Treatment. IOSR-JESTFT 6: 15-21. doi: 10.9790/2402-0661521 |
[6] | Levstek M, Plazl I (2009) Influence of carrier type on nitrification in the moving-bed biofilm process. Water Sci Technol 59: 875-882. doi: 10.2166/wst.2009.037 |
[7] | Rusten B, Eikebrokk B, Ulgenes Y, et al. (2006) Design and operations of the Kaldnes moving bed biofilm reactors. Aquacult Eng 34: 322-31. doi: 10.1016/j.aquaeng.2005.04.002 |
[8] | Ødegaard H, Gisvold B, Strickland J (2000) The influence of carrier size and shape in the moving bed biofilm process. Water Sci Technol 41: 383-391. |
[9] | Nakhli SAA, Ahmadizadeh K, Fereshtehnejad M, et al. (2014) Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia. SpringerPlus 3: 1-10. doi: 10.1186/2193-1801-3-1 |
[10] | Ceri H, Olson ME, Stremick CA, et al. (1999) The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J Clin Microbiol 37: 1771-1776. |
[11] | Bardouniotis E, Huddleston W, Ceri H, et al. (2001) Characterization of bio¢lm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203: 263-267. |
[12] | Olson ME, Ceri H, Morck DW, et al. (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66: 86-92. |
[13] | Harrison JJ, Ceri H, Stremick CA, et al. (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6: 1220-1227. |
[14] | Harrison JJ, Stremick CA, Turner RJ, et al. (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc 5: 1236-1254. doi: 10.1038/nprot.2010.71 |
[15] | Golby S, Ceri H, Gieg LM, et al. (2012) Evaluation of microbial biofilm communities from an Alberta oil sands tailings pond. FEMS Microbiol Ecol 79: 240-250. doi: 10.1111/j.1574-6941.2011.01212.x |
[16] | Kannel PR, Gan TY (2012) Naphthenic acids degradation and toxicity mitigation in tailings wastewater systems and aquatic environments: A review. J Env Sc Hlth Part A 47: 1-22. doi: 10.1080/10934529.2012.629574 |
[17] | Demeter MA, Lemire J, George I, et al. (2014) Harnessing oil sands microbial communities for use in ex situ naphthenic acid bioremediation. Chemosphere 97: 78-85. doi: 10.1016/j.chemosphere.2013.11.016 |
[18] | Demeter MA, Lemire JA, Yue G, et al. (2015) Culturing oil sands microbes as mixed species communities enhances ex situ model naphthenic acid degradation. Front Microbiol 6: 1-13. |
[19] | Quagraine E, Peterson H, Headley J (2005) In Situ Bioremediation of Naphthenic Acids Contaminated Tailing Pond Waters in the Athabasca Oil Sands Region—Demonstrated Field Studies and Plausible Options: A Review. J of Env Sc Hlth Part A 40: 685-722. doi: 10.1081/ESE-200046649 |
[20] | Lemire J, Turner RJ (2015) Protocols for Harvesting a Microbial Community Directly as a Biofilm for the Remediation of Oil Sand Process-Affected Water. Hydrocarbon and Lipid Microbiology Protocols. Springer Berlin Heidelberg [In press]. |
[21] | Demeter MA, Lemire J, Golby S, et al. (2015) Cultivation of Environmental Bacterial Communities as Multispecies Biofilms. Hydrocarbon and Lipid Microbiology Protocols. Springer Berlin Heidelberg [In press]. |
[22] | Wyndham RC, Costerton JW (1981) Heterotrophic Potentials and Hydrocarbon Biodegradation Potentials of Sediment Microorganisms Within the Athabasca Oil Sands Deposit. Appl Environ Microbiol 41: 783-790. |
[23] | Mailloux RJ, Lemire J, Kalyuzhnyi S, et al. (2008) A novel metabolic network leads to enhanced citrate biogenesis in Pseudomonas fluorescens exposed to aluminum toxicity. Extremophiles 12: 451-459. doi: 10.1007/s00792-008-0150-1 |
[24] | Garcia-Dominguez E, Mumford A, Rhine ED, et al. (2008) Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments. FEMS Microbiol Ecol 66: 401-410. doi: 10.1111/j.1574-6941.2008.00569.x |
[25] | Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton Leeuw 73: 127-141. doi: 10.1023/A:1000669317571 |
[26] | Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Micro 8: 623-633. |
[27] | Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Micro 6: 199-210. doi: 10.1038/nrmicro1838 |
[28] | Aygun A, Nas B, Berktay A (2008) Influence of High Organic Loading Rates on COD Removal and Sludge Production in Moving Bed Biofilm Reactor. Environ Eng Sci 25: 1311-1316. doi: 10.1089/ees.2007.0071 |