Citation: Xin Shu, Xin Cheng, Shubin Xu, Yunfang Chen, Tinghuai Ma, Wei Zhang. How to construct low-altitude aerial image datasets for deep learning[J]. Mathematical Biosciences and Engineering, 2021, 18(2): 986-999. doi: 10.3934/mbe.2021053
[1] | J. M. Peña, A. I. Castro, J. Torres–Sánchez, D. Andújar, C. S. Martín, J. Dorado, et al., Estimating tree height and biomass of a poplar plantation with image-based UAV technology, AIMS Agric. Food, 3 (2018), 313–326. doi: 10.3934/agrfood.2018.3.313 |
[2] | S. Chen, Y. Zhang, Y. Zhang, J. Yu, Y. Zhu, Embedded system for road damage detection by deep convolutional neural network, Math. Biosci. Eng., 16 (2019), 7982–7994. doi: 10.3934/mbe.2019402 |
[3] | M. Everingham, L. V. Gool, C. K. Williams, J. Winn, A. Zisserman, The pascal visual object classes (voc) challenge, Int. J. Comput. Vision, 88 (2010), 303–338. doi: 10.1007/s11263-009-0275-4 |
[4] | J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, L. Fei, ImageNet: A large–scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), 248–255. |
[5] | T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., Microsoft coco: Common objects in context, in European Conference on Computer Vision, Springer, (2014), 740–755. |
[6] | D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, et al., The unmanned aerial vehicle benchmark: Object detection and tracking, in European Conference on Computer Vision, Springer, (2018), 375–391. |
[7] | P. Zhu, L. Wen, X. Bian, H. Ling, Q. Hu, Vision meets drones: A challenge, preprint, arXiv: 1804.07437. |
[8] | A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning social etiquette: Human trajectory understanding in crowded scenes, in European Conference on Computer Vision, Springer, (2016), 549–565. |
[9] | M. Mueller, N. Smith, B. Ghanem, A benchmark and simulator for UAV tracking, in European Conference on Computer Vision, Springer, (2016), 445–461. |
[10] | M. Barekatain, M. Marti, H. Shih, S. Murray, K. Nakayama, Y. Matsuo, et al., Okutama-action: An aerial view video dataset for concurrent human action detection, in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, (2017), 2153–2160. |
[11] | S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C. Chen, J. T. Lee, et al., A large–scale benchmark dataset for event recognition in surveillance video, in 2011 IEEE Conference on Computer Vision and Pattern Recognition, (2011), 3153–3160. |
[12] | T. Shu, D. Xie, B. Rothrock, S. Todorovic, S. C. Zhu, Joint inference of groups, events and human roles in aerial videos, in 2015 IEEE Conference on Computer Vision and Pattern Recognition, (2015), 4576–4584. |
[13] | M. Bonetto, P. Korshunov, G. Ramponi, T. Ebrahimi, Privacy in mini–drone based video surveillance, in 2015 IEEE International Conference on Automatic Face Gesture Recognition, (2015), 1–6. |
[14] | M. Hsieh, Y. Lin, W. H. Hsu, Drone–based object counting by spatially regularized regional proposal network, in 2017 IEEE International Conference on Computer Vision, (2017), 4165–4173. |
[15] | F. Kamran, M. Shahzad, F. Shafait, Automated military vehicle detection from low-altitude aerial images, in 2018 Digital Image Computing: Techniques and Applications, (2018), 1–8. |
[16] | X. Xu, X. Zhang, B. Yu, X. S. Hu, C. Rowen, J. Hu, et al., DAC-SDC low power object detection challenge for UAV applications, preprint, arXiv: 1809.00110. |
[17] | C. Vondrick, D. Patterson, D. Ramanan, Efficiently scaling up crowdsourced video annotation, Int. J. Comput. Vision, 101 (2013), 184–204. doi: 10.1007/s11263-012-0564-1 |
[18] | C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, et al., Ava: A video dataset of spatio–temporally localized atomic visual actions, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 6047–6056. |
[19] | M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, Augmentation for small object detection, in 9th International Conference on Advances in Computing and Information Technology, 2019. |
[20] | W. Liu, L. Cheng, D. Meng, Brain slices microscopic detection using simplified SSD with Cycle–GAN data augmentation, in International Conference on Neural Information Processing, Springer, (2018), 454–463. |
[21] | C. Shorten, T. M. Khoshgoftaar, A survey on image data augmentation for deep learning, J. Big Data, 6 (2019), 1–48. doi: 10.1186/s40537-018-0162-3 |
[22] | K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the details: Delving deep into convolutional nets, preprint, arXiv: 1405.3531. |
[23] | R. Mash, B. Borghetti, J. Pecarina, Improved aircraft recognition for aerial refueling through data augmentation in convolutional neural networks, in International Symposium on Visual Computing, Springer, (2016), 113–122. |
[24] | L. Taylor, G. Nitschke, Improving deep learning using generic data augmentation, preprint, arXiv: 1708.06020. |
[25] | F. J. Morenobarea, F. Strazzera, J. M. Jerez, D. Urda, L. Franco, Forward noise adjustment scheme for data augmentation, in 2018 IEEE Symposium Series on Computational Intelligence, (2018), 728–734. |
[26] | L. Hu, The Quest for Machine Learning, 1st edition, Posts and Telecommunications Press, Beijing, 2018. |
[27] | N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: synthetic minority over–sampling technique, J. Artif. Intell. Res., 16 (2002), 321–357. doi: 10.1613/jair.953 |
[28] | H. Inoue, Data augmentation by pairing samples for images classification, preprint, arXiv: 1801.02929. |
[29] | H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, Mixup: Beyond empirical risk minimization, preprint, arXiv: 1710.09412. |
[30] | I. Goodfellow, J. Pougetabadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial nets, Adv. Neural Inf. Process. Syst., 27 (2014), 2672–2680. |
[31] | U. Shaham, Y. Yamada, S. Negahban, Conditional generative adversarial nets, preprint, arXiv: 1411.1784. |
[32] | J. Zhu, T. Park, P. Isola, A. A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in 2017 IEEE International Conference on Computer Vision, (2017), 2242–2251. |
[33] | T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in 2019 IEEE Conference on Computer Vision and Pattern Recognition, (2019), 4401–4410. |
[34] | W. Jiang, N. Ying, Improve object detection by data enhancement based on generative adversarial nets, preprint, arXiv: 1903.01716. |