Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Cheap signals in security token offerings (STOs)

  • Received: 07 July 2020 Accepted: 16 September 2020 Published: 21 September 2020
  • JEL Codes: C1, C5, G15, G3

  • Blockchain-based security token offerings (STOs) provide a new way of crowdfunding and corporate financing. Tokens are immediately transferable and can be traded 24/7 on secondary markets, clearing and settlement is a matter of only a few minutes, tokens can be held personally, i.e. brokers and custody accounts are no longer required and the underlying blockchain ensures transparency of all transactions. This study provides an overview of security tokens and the STO model for corporate financing. Our analysis investigates security tokens from the perspective of a firm looking to raise capital. Building on signaling theory, this paper examines 1) whether companies conducting an STO make use of cheap signals to influence investment behavior and 2) if such use of cheap signals is effective. We analyze a dataset of 151 STOs and identify that cheap signals of human capital and social media are used by projects and have a positive effect on funding success. The type of signals influencing funding success indicate that the market is still immature, as projects have a clear incentive to enlarge the level of asymmetric information between them and potential investors. The anticipated level of punishment for misusing cheap signaling is low, as the mechanism does not represent fraud but "cheating". This is a concern for investor protection.

    Citation: Lennart Ante, Ingo Fiedler. Cheap signals in security token offerings (STOs)[J]. Quantitative Finance and Economics, 2020, 4(4): 608-639. doi: 10.3934/QFE.2020028

    Related Papers:

    [1] Karen E. Livermore, Jennifer Munkley, David J. Elliott . Androgen receptor and prostate cancer. AIMS Molecular Science, 2016, 3(2): 280-299. doi: 10.3934/molsci.2016.2.280
    [2] Carla Marchetti . Green tea catechins and intracellular calcium dynamics in prostate cancer cells. AIMS Molecular Science, 2021, 8(1): 1-12. doi: 10.3934/molsci.2021001
    [3] Jin-Yih Low, Helen D. Nicholson . The up-stream regulation of polymerase-1 and transcript release factor(PTRF/Cavin-1) in prostate cancer: an epigenetic analysis. AIMS Molecular Science, 2016, 3(3): 466-478. doi: 10.3934/molsci.2016.3.466
    [4] Kannan Mayuri, Sundaram Vickram, Thirunavukarasou Anand, Konda Mani Saravanan . MicroRNA-mediated regulation of BCL-2 in breast cancer. AIMS Molecular Science, 2025, 12(1): 32-48. doi: 10.3934/molsci.2025003
    [5] Kit P. Croxford, Karen L. Reader, Helen D. Nicholson . The potential role of transforming growth factor beta family ligand interactions in prostate cancer. AIMS Molecular Science, 2017, 4(1): 41-61. doi: 10.3934/molsci.2017.1.41
    [6] Seidu A. Richard . High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS Molecular Science, 2018, 5(4): 183-241. doi: 10.3934/molsci.2018.4.183
    [7] Michela Illiano, Luigi Sapio, Ilaria Caiafa, Emilio Chiosi, Annamaria Spina, Silvio Naviglio . Forskolin sensitizes pancreatic cancer cells to gemcitabine via Stat3 and Erk1/2 inhibition. AIMS Molecular Science, 2017, 4(2): 224-240. doi: 10.3934/molsci.2017.2.224
    [8] Vladimir Zaichick, Sofia Zaichick, Maxim Rossmann . Intracellular calcium excess as one of the main factors in the etiology of prostate cancer. AIMS Molecular Science, 2016, 3(4): 635-647. doi: 10.3934/molsci.2016.4.635
    [9] Zhepeng Wang, Aiwu Lu . Cartilage type IIB procollagen NH2-propeptide, PIIBNP, inhibits angiogenesis. AIMS Molecular Science, 2021, 8(4): 291-300. doi: 10.3934/molsci.2021022
    [10] Simone Leggeri, Navid Sobhani . Single nucleotide polymorphisms Rs1045642 C>T genetic alteration in ATP Binding Cassette Subfamily B Member 1 role in increasing everolimus toxicity in metastatic breast cancer. AIMS Molecular Science, 2020, 7(1): 1-11. doi: 10.3934/molsci.2020001
  • Blockchain-based security token offerings (STOs) provide a new way of crowdfunding and corporate financing. Tokens are immediately transferable and can be traded 24/7 on secondary markets, clearing and settlement is a matter of only a few minutes, tokens can be held personally, i.e. brokers and custody accounts are no longer required and the underlying blockchain ensures transparency of all transactions. This study provides an overview of security tokens and the STO model for corporate financing. Our analysis investigates security tokens from the perspective of a firm looking to raise capital. Building on signaling theory, this paper examines 1) whether companies conducting an STO make use of cheap signals to influence investment behavior and 2) if such use of cheap signals is effective. We analyze a dataset of 151 STOs and identify that cheap signals of human capital and social media are used by projects and have a positive effect on funding success. The type of signals influencing funding success indicate that the market is still immature, as projects have a clear incentive to enlarge the level of asymmetric information between them and potential investors. The anticipated level of punishment for misusing cheap signaling is low, as the mechanism does not represent fraud but "cheating". This is a concern for investor protection.


    The optimal control problems (OCPs) of partial differential equations have been extensively studied in numerous fields of science and engineering applications, including fluid mechanics, earth science, petroleum engineering, telecommunication, etc., (see [1,2,3]). In the past few decades, scholars have conducted extensive research on OCPs (see [4,5,6]). From the perspective of control types, there is distributed control and boundary control (see [7,8,9]). With respect to the types of state equations, there are elliptic equations, parabolic equations, and second-order hyperbolic equations (SOHEs) [10]. Among the common numerical discretization schemes, there are finite element methods (FEM) [11], mixed element methods (MFVM) [12], and finite volume methods (FVM)[13]. In terms of handling optimization problems, there are two approaches: optimize-then-discretize and discretize-then-optimize [14].

    The OCPs constrained by SOHEs is an active area of research, attracting significant attention from numerous scholars. Gugat et al. in [15] proposed a valid method based on Lavrentiev regularization and obtained a result similar to the penalty function method for second-order hyperbolic optimal control problems (SOHOCPs) with state constraint. Kröner in [16] used the space-time FEM to discretize SOHOCPs and derived a posteriori error estimates, which separately considers the influence of space, time, and control. In [17], Kröner et al. analyzed the convergence of three types of controls constrained by wave equations utilizing the semismooth Newton method, and numerically implemented the solution in conjunction with the space-time FEM. Lu et al. derived a priori error estimates using the mixed finite element method for a general SOHOCPs in [18]. Luo et al. in [19,20] studied linear SOHOCPs using the FVM and obtained priori error estimates for the Euler and Crank-Nicolson schemes. Lu et al. in [21] used the FVM to study nonlinear SOHOCPs and obtained optimal error estimates for a semi-discrete system. Li et al. in [22] used the FEM and variational discretization approach to investigate linear SOHOCPs by introducing an intermediate variable and obtained optimal priori error estimates.

    Inspired by [21,22], we consider the following nonlinear SOHOCPs:

    minuUadJ(y,u)=12T0Ω|yyd|2dxdt+α2T0Ω|u|2dxdt, (1.1)

    such that

    {yttdiv(Ay)+ϕ(y)=f+Bu,xΩ,t(0,T),y(x,t)=0,xΩ,t(0,T),y(x,0)=y0(x),yt(x,0)=g(x),xΩ, (1.2)

    where ΩR2 is a bounded convex polygon domain with boundary Ω. α is a positive number. T>0 is a constant. f,ydL2(0,T;L2(Ω)) are given functions. ϕ(y) is a nonlinear function that satisfies ϕ()C2. For any R>0 and yH1(Ω), the function ϕ()W2,(R,R), ϕ()L2(Ω), and ϕ()0. A=(aij(x))2×2(W1,(ˉΩ))2×2 is symmetric and uniformly positive definite, i.e., for any XR2, there exist two positive constants C1,C2 such that

    0<C1XTXXTA(x)XC2XTX<+,xΩ.

    B:L2(0,T;L2(Ω))L2(0,T;L2(Ω)) is a bounded linear operator. The space Uad is defined by

    Uad={uL2(0,T;L2(Ω)):uau(x,t)ub,a.e.inΩ×(0,T]}.

    In this work, by introducing a new variable, we transform the hyperbolic equation into two parabolic equations. For the SOHOCPs (1.1) and (1.2), we obtain the continuous first-order necessary condition (FNC) and the second-order sufficient optimality condition (SSC). Using the discretize-then-optimize procedure, we derive the discrete optimality condition for the fully discrete scheme. Based on these, we obtain some optimal error estimates.

    The paper is organized as follows. We give some notations in Section 2. In Section 3, we derive the first and second-order optimality conditions. The Crank-Nicolson finite element approximation and a priori error estimates are presented in Section 4. In Section 5, a numerical experiment is presented to confirm the validity of the proposed numerical scheme.

    After this, C represents different positive constants in different places, each of which is independent of h and Δt.

    Here, we first introduce some notations. Wm,p(Ω) is a standard Sobolev space with norm ||||Wm,p(Ω). W1,2(Ω)=H1(Ω) with norm ||||1, and H10(Ω)={υH1(Ω):υ|Ω=0}. Lk(Ω) denotes a k-squared integrable function space in region Ω with norm ||||. The norm of Lk(Ω) is denoted by ||||0,U. We denote by Lk(0,T;Wm,p(Ω)) the Banach space of all Lk integrable functions from (0,T) into Wm,p(Ω) with norm ||υ||Lk(Wm,p)=||υ||Lk(0,T;Wm,p(Ω))=(T0||υ||kWm,p(Ω))1k for k[1,) and the standard modification for k=.

    For a positive integer N, define time step size Δt by Δt=TN. For n=0,1,...,N1, tn=nΔt, In+1=[tn,tn+1]. write

    dtζn+1=ζn+1ζnΔt,ˉdtζn+1=ζnζn+1Δt,

    and Q=Ω×(0,T]. For any given sequence {ζn}Mn=0, ζn=ζ(x,tn) for the function ζ(x,t) defined in Q. For 1q, a discrete time-dependent norm is given by

    ||υ||lq(Wm,p):=||υ||lq(0,T;Wm,p)=(Nn=1Δt||υn||qWm,p)1q,

    and the standard modification for q=, where

    lq(Wm,p):={υ:||υ||lq(0,T;Wm,p))<}.

    The inner product is noted by

    (υ1,υ2)=Ωυ1υ2dx,υ1,υ2L2(Ω).

    For convenience, we take A to be the identity matrix and write

    a(υ1,υ2)=ΩAυ1υ2dx=(υ1,υ2),υ1,υ2H10(Ω).

    It is obvious that

    a(υ,υ)c1||υ||21,|a(υ1,υ2)|c2||υ1||1||υ2||1,υ,υ1,υ2H10(Ω).

    Let Th be a quasi-uniform triangulation of Ω, hK denotes the diameter of element K, and h=maxKTh{hK}. The space Vh associated with Th is defined by

    Vh:={νh|νhC(ˉΩ),νh|KP1(K),KTh},

    where P1(K) denotes the polynomials space with the degree being no more than one on KTh.

    We consider the following piecewise constant finite element space

    Uh:={uhL2(0,T;Ω):uh|Kisconstant,KTh},

    which is a finite dimensional subspace of Uad.

    For any μU, we define the orthogonal projection operator Πh:UUh such that

    (wh,μΠhμ)=0,whUh. (2.1)

    By the definition of Eq (2.1), we have

    Πhμ|K=1|K|Kμ,KTh, (2.2)

    where |K| is the measure of K. For the operator Πh defined in Eq (2.1), we have

    |μΠhμ|0,p,KCh|μ|1,p,K, (2.3)

    for all μW1,p(Ω) and 1p (see [23]).

    For t(0,T], define L2 projection Rhυ(t)Vh for υ(t)V by

    (υ(t)Rhυ(t),νh)=0,νhVh. (2.4)

    As in [24], for 1r2, the Rhυ(t) satisfies

    ||υRhυ(t)||l2(L2)+h||υRhυ(t)||l2(H1)Chr||υ||l2(Hr), (2.5)
    ||(υRhυ(t))t||L2(L2)+h||(υRhυ(t))t||L2(H1)Chr||υ||H1(Hr). (2.6)

    In this section, we first give the weak form of the state equation (1.2) as: We seek y(,t)H10(Ω) such that

    {(ytt,v)+(y,v)+(ϕ(y),v)=(f+Bu,v),vH10(Ω),t(0,T],y(x,0)=y0(x),ω(x,0)=g(x),xΩ. (3.1)

    Next, we introduce a new variable ω=yt, then the problem (1.1) and (1.2) can be written as

    minuUadJ(y,u)=12T0Ω|yyd|2dxdt+α2T0Ω|u|2dxdt, (3.2)

    subject to

    {(ω,v)=(yt,v),vH10(Ω),t(0,T],(ωt,v)+(y,v)+(ϕ(y),v)=(f+Bu,v),vH10(Ω),t(0,T],y(x,0)=y0(x),ω(x,0)=g(x),xΩ. (3.3)

    The problem (3.2) and (3.3) is formulated in standard reduced functional form as

    {minJ(u)uUad. (3.4)

    Since the problem (3.4) is non-convex, we cannot guarantee the global unique solutions of (3.4). Therefore, we consider the local optimal solutions (see [25,26,27]).

    Definition 3.1. (Local solution [28]). The control ˉuUad is called a local solution of the problem (3.4) if for each fixed t[0,T], there exists a constant ι>0, such that for all uUad with ||uˉu||<ι, it satisfies

    J(u)J(ˉu). (3.5)

    For the problem (3.4), the existence of the local solution can be guaranteed in [10]. Next, we can derive the following FNC for the local solution ˉu.

    Theorem 3.1. If ˉu is a local optimal control for the problem (3.4), then there exists a set of functions (ω(t),y(t),ˉu(t),q(t),p(t))(H1(L2)L2(H1))×(H2(L2)L2(H1))×Uad×(H1(L2)L2(H1))×(H2(L2)L2(H1)) such that

    {(ω,v1)=(yt,v1),v1H10(Ω),t(0,T],(ωt,v2)+(y,v2)+(ϕ(y),v2)=(f+Bˉu,v2),v2H10(Ω),t(0,T],y(x,0)=y0(x),ω(x,0)=g(x),xΩ, (3.6)
    {(q,v1)=(pt,v1),v1H10(Ω),t(0,T],(qt,v2)+(q,v2)+(ϕ(y)p,v2)=(yyd,v2),v2H10(Ω),t(0,T],p(x,T)=0,q(x,T)=0,xΩ, (3.7)
    T0(αˉu+Bp,vˉu)dt0,vUad, (3.8)

    where B is the adjoint operator of B.

    Proof. Applying the variational rule, the optimal condition reads

    J(ˉu)(vˉu)=T0(yyd,Dˉuy(vˉu))dt+αT0(ˉu,vˉu)dt0, (3.9)

    where

    Dˉuy(vˉu)=limt0y(ˉu+t(vˉu))y(ˉu)t.

    Next, differentiating the state equation (3.6) at ˉu in the direction ϱ, we have

    (ωDˉuy(ϱ),v1)=(Dˉuy(ϱ)t,v1), (3.10)
    (ωtDˉuy(ϱ),v2)+(Dˉuy(ϱ)),v2)+ϕ(y)Dˉuy(ϱ),v2)=(Bϱ,v2), (3.11)
    Dˉuy(ϱ)(t=0)=0,  ωDˉuy(ϱ)(t=0)=0. (3.12)

    Defining the co-state (p,q) satisfying Eq (3.7), and letting v1=ωDˉuy(ϱ),v2=Dˉuy(ϱ) in Eq (3.7), we can obtain

    (q,ωDˉuy(ϱ))=(pt,ωDˉuy(ϱ)), (3.13)
    (qt,Dˉuy(ϱ))+(p,Dˉuy(ϱ))+(ϕ(y)p,Dˉuy(ϱ))=(yyd,Dˉuy(ϱ)), (3.14)

    Meanwhile, letting v1=q in Eq (3.10) and v2=p in Eq (3.11), we get

    (ωDˉuy(ϱ),q)=(Dˉuy(ϱ)t,q), (3.15)
    (ωtDˉuy(ϱ),p)+(Dˉuy(ϱ),p)+(ϕ(y)Dˉuy(ϱ),p)=(Bϱ,p). (3.16)

    Since ωDˉuy(ϱ)(t=0)=0,Dˉuy(ϱ)(t=0)=0,q(T)=0,p(T)=0, integrating by parts and a direct calculation, we can yield

    T0(Dˉuy(ϱ)t,q)dt=Dˉuy(ϱ)q|T0T0(Dˉuy(ϱ),qt)dt=T0(Dˉuy(ϱ),qt)dt, (3.17)
    T0(ωtDˉuy(ϱ),p)dt=ωDˉuy(ϱ)p|T0T0(ωDˉuy(ϱ),pt)dt=T0(ωDˉuy(ϱ),pt)dt. (3.18)

    Substituting Eqs (3.17) and (3.18) into Eqs (3.15) and (3.16), we derive

    (ωDˉuy(ϱ),q)=(Dˉuy(ϱ),qt), (3.19)
    (ωDˉuy(ϱ),pt)+(Dˉuy(ϱ),p)+(ϕ(y)Dˉuy(ϱ),p)=(Bϱ,p), (3.20)

    Combining Eqs (3.19) and (3.20) with Eqs (3.13) and (3.14) yields

    (ϱ,Bp)=(Bϱ,p)=(yyd,Dˉuy(ϱ)). (3.21)

    Substituting Eq (3.21) into Eq (3.9) implies

    J(ˉu)(vˉu)=T0(αˉu+Bp,vˉu)dt0,vUad. (3.22)

    This completes the proof of Theorem 3.1.

    According to [26] and [29], we can know that for the non-convex problem (3.4), the FNC is not sufficient. So, we need to consider the SSC:

    (SSC) There exist constants κ>0 and λ>0 such that

    J (3.23)

    for all v\in L^{2}(0, T; L^{2}(\Omega)) satisfying

    \begin{eqnarray} v\left\{ \begin{array}{lll} & = 0, &if\; \; |\alpha u+B^{*}p|\geq\lambda > 0, \\ &\geq 0, &if\; \bar{u} = u_{a}, \\ &\leq0, &if\; \; \bar{u} = u_{b} , \end{array}\right. \end{eqnarray} (3.24)

    where

    \begin{align} \mathcal{J}''(\bar{u})(v, v) = &\int_0^T(\mathcal{D}_{\bar{u}}y(v), \mathcal{D}_{\bar{u}}y(v))dt+\int_0^T(y(\bar{u})-y_{d}, \mathcal{D}^{2}_{\bar{u}}y(v, v)dt\\ &+\alpha\int_0^T(v, v)dt, \end{align} (3.25)

    and the notation \mathcal{D}^{2}_{\bar{u}}y(v, v) is defined as follows: Let \tilde{y} = \mathcal{D}_{\bar{u}}y(v) . Then, its directional derivative in the direction v , denoted as \tilde{y}'(v) , is given by

    \begin{align*} \mathcal{D}^{2}_{\bar{u}}y(v, v) = \mathcal{D}_{\bar{u}}\tilde{y}(v) = \lim\limits_{t\rightarrow 0}\frac{\tilde{y}(\bar{u}+tv)-\tilde{y}(\bar{u})}{t}. \end{align*}

    More details about the notation \mathcal{D}^{2}_{\bar{u}}y(v, v) can be found in [2].

    Referring to [30], we give the coercive property of the problem (3.4) in a neighborhood of the local solution by the following lemma.

    Lemma 3.1. Assume that \bar{u} is a local solution of the problem (3.4) and satisfies the SSC (3.23). There exists a sufficient small constant \iota > 0 such that

    \begin{align} \mathcal{J}''(\bar{u})(v, v)\geq \frac{\kappa}{2}||v||_{L_{2}(L_{2}(\Omega)}^{2}, \end{align} (3.26)

    for all u\in U_{ad} with ||u-\bar{u}|| < \iota .

    In this section, we develop a fully discrete Crank-Nicolson scheme for the optimality system (3.2)–(3.3) as follows:

    \begin{align} &\mathcal{J}_{\delta}(y_{h} ^{n+\frac{1}{2}}, u_{h} ^{n+\frac{1}{2}} ) = \Delta t\sum^{N-1}_{n = 0}\Big[\frac{1}{2}||y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}||^{2}_{0, \Omega} +\frac{\alpha}{2}||u_{h} ^{n+\frac{1}{2}}||^{2}_{0, \Omega}\Big], \end{align} (4.1)
    \begin{align} &(\omega_{h}^{n+\frac{1}{2}}, v) = \frac{1}{\Delta t}(y_{h}^{n+1}-y_{h} ^{n}, v), \qquad \forall v\in V_h \end{align} (4.2)
    \begin{align} &\frac{1}{\Delta t}(\omega_{h}^{n+1}-\omega_{h} ^{n}, v)+(\nabla y_{h}^{n+\frac{1}{2}}, \nabla v )+(\phi(y_{h} ^{n+\frac{1}{2}}), v) = (f^{n+\frac{1}{2}}+Bu_{h}^{n+\frac{1}{2}}, v), \qquad \forall v\in V_h \end{align} (4.3)
    \begin{align} &y_{h}^{0} = \mathcal{R}_{h}y_{0}(x), \; \omega_{h}^{0} = \mathcal{R}_{h}g(x), \qquad x\in \Omega, \end{align} (4.4)

    where \delta = \delta(h, \Delta t) denotes the fully discrete in space and time. We can reformulate the problem (4.1)–(4.4) as

    \begin{eqnarray} \left\{ \begin{array}{lll} \min \mathcal{J}_{\delta}(u_{h} ^{n+\frac{1}{2}})\\ u_{h} ^{n+\frac{1}{2}}\in U_{h}. \end{array} \; \; \; \; \right. \end{eqnarray} (4.5)

    We also give the definition of the local solution of the discrete control problem (4.1)–(4.4).

    Definition 4.1. The control \bar{u}_{h} ^{n+\frac{1}{2}}\in U_{h} is called a fully discrete local solution of the problem (4.1)–(4.4) if for each fixed t^{n+\frac{1}{2}} , there exists a constant \iota > 0 , such that for \forall u_{h}^{n+\frac{1}{2}}\in U_{h} with ||u_{h}^{n+\frac{1}{2}}-\bar{u}_{h} ^{n+\frac{1}{2}}|| < \iota , it satisfies

    \begin{align} \mathcal{J}_{\delta}(u_{h} ^{n+\frac{1}{2}})\geq \mathcal{J}_{\delta}(\bar{u}_{h} ^{n+\frac{1}{2}}). \end{align} (4.6)

    We present the first-order necessary optimality condition for problem (4.1)–(4.4) at the local solution \bar{u}_{h} ^{n+\frac{1}{2}} by the following theorem.

    Theorem 4.1. Assume that \bar{u}_{h}^{n+\frac{1}{2}}, n = 0, 1, ..., N-1 is a local solution of discrete control problem (4.1)–(4.4) , then there are state (\omega_{h}^{n+\frac{1}{2}}, y_{h}^{n+\frac{1}{2}})\in V_h\times V_h and co-state (q_{h}^{n+\frac{1}{2}}, p_{h}^{n+\frac{1}{2}})\in V_h\times V_h , n = 0, 1, ..., N-1 , such that the following optimality conditions hold:

    \begin{align} &(\omega_{h}^{n+\frac{1}{2}}, v) = \frac{1}{\Delta t}(y_{h}^{n+1}-y_{h} ^{n}, v ), \qquad \forall v\in V_h, \end{align} (4.7)
    \begin{align} &\frac{1}{\Delta t}(\omega_{h}^{n+1}-\omega_{h} ^{n}, v )+(\nabla y_{h}^{n+\frac{1}{2}}, \nabla v )+(\phi(y_{h} ^{n+\frac{1}{2}}), v) = (f^{n+\frac{1}{2}}+B\bar{u}_{h}^{n+\frac{1}{2}}, v), \quad \forall v\in V_h, \end{align} (4.8)
    \begin{align} &y_{h}^{0} = \mathcal{R}_{h}y_{0}(x), \; \omega_{h}^{0} = \mathcal{R}_{h}g(x), \qquad x\in \Omega, \end{align} (4.9)
    \begin{align} &(q_{h}^{n+\frac{1}{2}}, v) = \frac{1}{\Delta t}(p_{h}^{n+1}-p_{h} ^{n}, v ), \qquad \forall v\in V_h, \end{align} (4.10)
    \begin{align} &\frac{1}{\Delta t}(q_{h}^{n+1}-q_{h} ^{n}, v )+(\nabla p_{h}^{n+\frac{1}{2}}, \nabla v )+(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h}^{n+\frac{1}{2}}, v) = (y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}, v), \quad\forall v\in V_h, \end{align} (4.11)
    \begin{align} &p_{h}^{N}(x) = 0, \; q_{h}^{N}(x) = 0, \qquad x\in \Omega. \end{align} (4.12)
    \begin{align} &\mathcal{J}'_{\delta}(\bar{u}_{h} ^{n+\frac{1}{2}})(v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}) = \Delta t\sum^{N-1}_{n = 0}(\alpha \bar{u}_{h} ^{n+\frac{1}{2}}+B^{*}p_{h} ^{n+\frac{1}{2}}, v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}) \geq0, \quad \forall v_{h}\in U_h. \end{align} (4.13)

    Proof. Differentiate the Eq (4.5) at \bar{u}_{h} ^{n+\frac{1}{2}} in the direction v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}} , and the discrete optimal condition reads

    \begin{align} \mathcal{J}'_{\delta}(\bar{u}_{h} ^{n+\frac{1}{2}})(v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}) & = \lim\limits_{t\rightarrow 0}\frac{\mathcal{J}_{\delta}(\bar{u}_{\delta}+t(v_{h}-\bar{u}_{\delta}))-\mathcal{J}_{\delta}(\bar{u}_{\delta})}{t}\\ & = \Delta t\sum^{N-1}_{n = 0} (y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}, \mathcal{D}y_{h} ^{n+\frac{1}{2}}(v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}))\\ &\; \; +\alpha\Delta t\sum^{N-1}_{n = 0}(\bar{u}_{h} ^{n+\frac{1}{2}}, v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}) \geq 0. \end{align} (4.14)

    Similarly, differentiating the Eqs (4.7) and (4.8) at \bar{u}_{h}^{n+\frac{1}{2}} in the direction \nu , we have

    \begin{align} &(\omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu), v) = \frac{1}{\Delta t}(\mathcal{D}y_{h} ^{n+1}(\nu)-\mathcal{D}y_{h} ^{n}(\nu), v ), \end{align} (4.15)
    \begin{align} &\frac{1}{\Delta t}(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu)-\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), v )+(\nabla \mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), \nabla v )\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +(\phi'(y_{h} ^{n+\frac{1}{2}})\mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), v) = (B\nu, v), \end{align} (4.16)
    \begin{align} &\mathcal{D}y^{0}_{h}(\nu) = 0, \; \; \omega'(y_{h}^{0})\mathcal{D}y_{h}^{0}(\nu) = 0. \end{align} (4.17)

    where

    \begin{align*} \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) = \lim\limits_{t\rightarrow 0}\frac{y_{h}^{n+\frac{1}{2}}(\bar{u}_{h}^{n+\frac{1}{2}}+tv)-y_{h}^{n+\frac{1}{2}}(\bar{u}_{h}^{n+\frac{1}{2}})}{t}. \end{align*}

    Choosing the discrete co-state (p_{\delta}, q_{\delta}) satisfying Eqs (4.10)–(4.12), and selecting v = \omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) in Eq (4.10) and v = \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) in Eq (4.11), we get

    \begin{align} &(q_{h}^{n+\frac{1}{2}}, \omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu)) = \frac{1}{\Delta t}(p_{h}^{n+1}-p_{h} ^{n}, \omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) ), \end{align} (4.18)
    \begin{align} &\frac{1}{\Delta t}(q_{h}^{n+1}-q_{h} ^{n}, \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) )+(\nabla p_{h}^{n+\frac{1}{2}}, \nabla \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu) )\\ &\quad+(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h}^{n+\frac{1}{2}}, \mathcal{D}y_{h}^{n+1}(\nu)) = (y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}, \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu)). \end{align} (4.19)

    Taking v = q_{h} ^{n+\frac{1}{2}} in Eq (4.15) and v = p_{h} ^{n+\frac{1}{2}} in Eq (4.16), we have

    \begin{align} &(\omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu), q_{h} ^{n+\frac{1}{2}}) = \frac{1}{\Delta t}(\mathcal{D}y_{h} ^{n+1}(\nu)-\mathcal{D}y_{h} ^{n}(\nu), q_{h} ^{n+\frac{1}{2}} ), \end{align} (4.20)
    \begin{align} &\frac{1}{\Delta t}(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu)-\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), p_{h} ^{n+\frac{1}{2}} ) +(\nabla \mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), \nabla p_{h} ^{n+\frac{1}{2}} )\\ &\; \; \; \; \; \; \; +(\phi'(y_{h} ^{n+\frac{1}{2}})\mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), p_{h} ^{n+\frac{1}{2}}) = (B\nu, p_{h} ^{n+\frac{1}{2}}), \end{align} (4.21)

    Since \mathcal{D}y_{h}^{0}(\nu) = 0, \; \omega'(y_{h}^{0})\mathcal{D}y_{h}^{0}(\nu) = 0, \; p_{h} ^{N} = 0, \; q_{h} ^{N} = 0 , we know that

    \begin{align} &\sum^{N-1}_{n = 0}(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu)-\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), p_{h} ^{n+\frac{1}{2}} ) \\ = &\sum^{N-1}_{n = 0} \left(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu)-\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), \frac{p_{h} ^{n}+p_{h} ^{n+1}}{2} \right)\\ = &\frac{1}{2}\sum^{N-1}_{n = 0}\Big[(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu), p_{h} ^{n}+p_{h} ^{n+1})-(\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), p_{h} ^{n}+p_{h} ^{n+1})\Big]\\ = &\frac{1}{2}\sum^{N-1}_{n = 0}\Big[(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu), p_{h} ^{n}-p_{h} ^{n+1})+(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu), p_{h} ^{n+1})\\ &\; \; \; \; \; \; \; \; \; \; \; -(\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), p_{h} ^{n+1}-p_{h} ^{n})-(\omega'(y_{h}^{n})\mathcal{D}y_{h} ^{n}(\nu), p_{h} ^{n})\Big]\\ = &\sum^{N-1}_{n = 0} (\omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), p_{h} ^{n}-p_{h} ^{n+1}), \end{align} (4.22)

    and

    \begin{align} \sum^{N-1}_{n = 0} (\mathcal{D}y_{h} ^{n+1}(\nu)-\mathcal{D}y_{h} ^{n}(\nu), q_{h} ^{n+\frac{1}{2}} ) = -\sum^{N-1}_{n = 0} (q_{h} ^{n+1}-q_{h} ^{n}, \; \mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu)). \end{align} (4.23)

    Substituting Eqs (4.22) and (4.23) into Eqs (4.20) and (4.21), we obtain

    \begin{align} &(\omega'(y_{h}^{n+\frac{1}{2}})\mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu), q_{h} ^{n+\frac{1}{2}}) = -\frac{1}{\Delta t}(q_{h} ^{n+1}-q_{h} ^{n}, \; \mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu)), \end{align} (4.24)
    \begin{align} &-\frac{1}{\Delta t}(\omega'(y_{h}^{n+1})\mathcal{D}y_{h}^{n+1}(\nu), p_{h} ^{n+1}-p_{h} ^{n} ) +(\nabla\mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), \nabla p_{h} ^{n+\frac{1}{2}} )\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +(\phi'(y_{h} ^{n+\frac{1}{2}})\mathcal{D}y_{h} ^{n+\frac{1}{2}}(\nu), p_{h} ^{n+\frac{1}{2}}) = (B\nu, p_{h} ^{n+\frac{1}{2}}). \end{align} (4.25)

    Combining Eqs (4.24) and (4.25) with Eqs (4.18) and (4.19), and summing from 0 to N-1 leads to

    \begin{align} \sum^{N-1}_{n = 0}\Delta t(B^{*}p_{h} ^{n+\frac{1}{2}}, \nu) = \sum^{N-1}_{n = 0}\Delta t(B\nu , p_{h} ^{n+\frac{1}{2}}) = \sum^{N-1}_{n = 0}\Delta t(y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}, \mathcal{D}y_{h}^{n+\frac{1}{2}}(\nu)). \end{align} (4.26)

    Therefore, substituting Eq (4.26) into Eq (4.14), we get

    \begin{align} &\mathcal{J}'_{\delta}(\bar{u}_{h} ^{n+\frac{1}{2}})(v_{h}-\bar{u}_{h} ^{n+\frac{1}{2}}) = \Delta t\sum^{N-1}_{n = 0}(\alpha u_{h} ^{n+\frac{1}{2}}+B^{*}p_{h} ^{n+\frac{1}{2}}, v_{h}-u_{h} ^{n+\frac{1}{2}}) \geq0, \quad \forall v_{h}\in U_h. \end{align} (4.27)

    This completes the proof of Theorem 4.1.

    Similarly, we also provide the discrete SSC for the local solution \bar{u}_{h} ^{n+\frac{1}{2}} as

    \begin{align} &\mathcal{J}''_{\delta}( \bar{u}_{h} ^{n+\frac{1}{2}})(v_{h}, v_{h})\geq \kappa||v_{h}||_{l_{2}(L_{2}(\Omega )}^{2}, \quad \forall v_{h}\in U_h. \end{align} (4.28)

    where \kappa > 0 , and \bar{u}_{h} ^{n+\frac{1}{2}} satisfies Eq (4.13). From Eq (4.1), we can get

    \begin{align} \mathcal{J}''_{\delta}( \bar{u}_{h} ^{n+\frac{1}{2}})(v_{h}, v_{h}) = &\Delta t\sum^{N-1}_{n = 0} (\mathcal{D}y_{h} ^{n+\frac{1}{2}}(v_{h}), \mathcal{D}y_{h} ^{n+\frac{1}{2}}(v_{h}))\\ &+\Delta t\sum^{N-1}_{n = 0} (y_{h} ^{n+\frac{1}{2}}-y_{d} ^{n+\frac{1}{2}}, \mathcal{D}^{2}y_{h} ^{n+\frac{1}{2}}(v_{h}, v_{h}))+\alpha\Delta t\sum^{N-1}_{n = 0}(v_{h}, v_{h}) . \end{align} (4.29)

    The following lemma shows the coercive property of the second derivative of the discrete objective function \mathcal{J}_{\delta} in a neighborhood of a local solution \bar{u} .

    Lemma 4.1. Let \bar{u} be a local solution of the problem (3.4) and the SSC (3.23) is valid. There exists sufficiently small constant \iota > 0 , and h , for all u\in U_{ad} with ||u-\bar{u}|| < \iota and v\in U_{ad} ,

    \begin{align} \mathcal{J}''_{\delta}(u)(v, v)\geq\frac{\kappa}{4}||v||^{2}_{l_{2}(L_{2}(\Omega )} \end{align} (4.30)

    holds.

    So as to get a priori estimates, it is needed to introduce an auxiliary problem: find (\omega_{h}^{n+\frac{1}{2}}(u), y_{h}^{n+\frac{1}{2}}(u)) \in V_h\times V_h , n = 0, 1, \ldots, N-1 , such that for all v\in V_h ,

    \begin{align} \; &(\omega_{h}^{n+\frac{1}{2}}(u), v) = \frac{1}{\Delta t}(y_{h}^{n+1}(u)-y_{h} ^{n}(u), v ), \end{align} (4.31)
    \begin{align} &\frac{1}{\Delta t}(\omega_{h}^{n+1}(u)-\omega_{h} ^{n}(u), v )+(\nabla y_{h}^{n+\frac{1}{2}}(u), \nabla v )+(\phi(y_{h} ^{n+\frac{1}{2}}(u)), v) = (f^{n+\frac{1}{2}}+Bu^{n+\frac{1}{2}}, v), \end{align} (4.32)
    \begin{align} &y_{h}^{0}(u) = \mathcal{R}_{h}y_{0}(x), \; \omega_{h}^{0}(u) = \mathcal{R}_{h}g(x). \end{align} (4.33)

    Another auxiliary problem: find (q_{h}^{n+\frac{1}{2}}(u), p_{h}^{n+\frac{1}{2}}(u))\in V_h\times V_h , n = 0, 1, \ldots, N-1 , such that for all v\in V_h ,

    \begin{align} &(q_{h}^{n+\frac{1}{2}}(u), v) = \frac{1}{\Delta t}(p_{h}^{n+1}(u)-p_{h} ^{n}(u), v ), \end{align} (4.34)
    \begin{align} &\frac{1}{\Delta t}(q_{h}^{n+1}(u)-q_{h} ^{n}(u), v )+(\nabla p_{h}^{n+\frac{1}{2}}(u), \nabla v )+(\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h}^{n+\frac{1}{2}}(u), v)\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; = (y_{h}^{n+\frac{1}{2}}(u)-y_{d}^{n+\frac{1}{2}}, v), \end{align} (4.35)
    \begin{align} &q_{h}^{N}(u) = 0, \; p_{h}^{N}(u) = 0. \end{align} (4.36)

    For convenience, we denote

    \begin{align*} &\theta_{\omega} ^{n} = \omega_{h} ^{n}-\omega_{h} ^{n}(u), \; \theta_{y} ^{n} = y_{h} ^{n}-y_{h} ^{n}(u), n = 0, 1, \ldots, N, \\ &\theta_{q} ^{n} = q_{h} ^{n}-q_{h} ^{n}(u), \; \theta_{p} ^{n} = p_{h} ^{n}-p_{h} ^{n}(u), n = N, \ldots , 1, 0. \end{align*}

    It is clear that

    \begin{align} \theta _{\omega}^{0} = 0, \; \theta _{y}^{0} = 0, \; \theta _{q}^{N} = 0, \; \theta _{p}^{N} = 0. \end{align} (4.37)

    Next, we describe the error caused by the control discretization using the following lemma.

    Lemma 4.2. Let (\omega_{\delta}, y_{\delta}, q_{\delta}, p_{\delta}) and (\omega_{\delta}(u), y_{\delta}(u), q_{\delta}(u), p_{\delta}(u)) be the solutions of Eqs (4.7)–(4.12) and Eqs (4.31)–(4.36), respectively. Then,

    \begin{align} &||\omega_{\delta} -\omega_{\delta}(u)||_{l^{\infty}(L^{2})}+||y_{\delta}-y_{\delta}(u)||_{l^{\infty}(H^{1})}\leq C||u_{\delta}-u||_{l^{2}(L^{2}(\Omega ))}, \end{align} (4.38)
    \begin{align} &||q_{\delta}-q_{\delta}(u)||_{l^{\infty}(L^{2})}+||p_{\delta}-p_{\delta}(u)||_{l^{\infty}(H^{1})}\leq C||u_{\delta}-u||_{l^{2}(L^{2}(\Omega ))}. \end{align} (4.39)

    Proof. To begin, we develop the inequality for \theta _{\omega} and \theta _{y} . Subtracting Eqs (4.7) and (4.8) from Eqs (4.31) and (4.32), we derive

    \begin{align} &(\theta_{\omega}^{n+\frac{1}{2}}, v) = \frac{1}{\Delta t}(\theta_{y} ^{n+1}-\theta_{y} ^{n}, v ), \end{align} (4.40)
    \begin{align} &\frac{1}{\Delta t}(\theta_{\omega}^{n+1}-\theta_{\omega} ^{n}, v )+(\nabla \theta_{y} ^{n+\frac{1}{2}}, \nabla v )+(\phi(y_{h} ^{n+\frac{1}{2}})-\phi(y_{h}^{n+\frac{1}{2}}(u)), v) = (B(u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}), v). \end{align} (4.41)

    Choosing v = \theta_{y} ^{n+\frac{1}{2}} , v = \theta_{\omega}^{n+\frac{1}{2}} as the test function in Eqs (4.40) and (4.41), respectively, we have

    \begin{align} \; &\frac{1}{\Delta t}(\theta_{y} ^{n+1}-\theta_{y} ^{n}, \theta_{y} ^{n+\frac{1}{2}} ) = (\theta_{\omega} ^{n+\frac{1}{2}}, \theta_{y} ^{n+\frac{1}{2}}), \end{align} (4.42)
    \begin{align} &\frac{1}{\Delta t}(\theta_{\omega} ^{n+1}-\theta_{\omega} ^{n}, \theta_{\omega} ^{n+\frac{1}{2}} )+(\nabla \theta_{y} ^{n+\frac{1}{2}}, \nabla \theta_{\omega} ^{n+\frac{1}{2}} )\\ = &(\phi(y_{h} ^{n+\frac{1}{2}})(u)-\phi(y_{h} ^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}})+(B(u_{h}^{n+1}-u^{n+1}), \theta_{\omega} ^{n+\frac{1}{2}}). \end{align} (4.43)

    Substituting Eq (4.42) into Eq (4.43), we get

    \begin{align} &\frac{1}{2\Delta t}\Big[||\theta_{\omega} ^{n+1}||^{2}- ||\theta_{\omega} ^{n}||^{2}+ ||\nabla\theta_{y} ^{n+1}||^{2}- ||\nabla \theta_{y} ^{n}||^{2}\Big]\\ = &(\phi(y_{h} ^{n+\frac{1}{2}})(u)-\phi(y_{h} ^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}})+(B(u_{h}^{n+1}-u^{n+1}), \theta_{\omega} ^{n+\frac{1}{2}}). \end{align} (4.44)

    Summing up from n = 0 up to N-1 , it yields

    \begin{align} &||\theta_{\omega} ^{N}||^{2}+||\nabla\theta_{y} ^{N}||^{2}\\ = &2\Delta t\sum^{N-1}_{n = 0}(B(u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}}) +2\Delta t\sum^{N-1}_{n = 0}(\phi(y_{h} ^{n+\frac{1}{2}}(u))-\phi(y_{h} ^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}}). \end{align} (4.45)

    For the first term, we derive

    \begin{align} 2\Delta t\sum^{N-1}_{n = 0}(B(u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}}) \leq& C\Delta t\sum^{N-1}_{n = 0}\Big[||u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}||_{0, \Omega }^{2}+||\theta_{\omega} ^{n+\frac{1}{2}}||^{2}\Big]\\ \leq&C\Delta t\sum^{N-1}_{n = 0}\Big[||u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}||_{0, \Omega }^{2}+(||\theta_{\omega} ^{n+1}||^{2}+||\theta_{\omega} ^{n}||^{2})\Big]. \end{align} (4.46)

    For the second term, we get

    \begin{align} 2\Delta t\sum^{N-1}_{n = 0}(\phi(y_{h} ^{n+\frac{1}{2}}(u))-\phi(y_{h} ^{n+\frac{1}{2}}), \theta_{\omega} ^{n+\frac{1}{2}}) \leq& C\Delta t\sum^{N-1}_{n = 0}\Big[||\theta_{y} ^{n+\frac{1}{2}}||^{2}+||\theta_{\omega} ^{n+\frac{1}{2}}||^{2}\Big]\\ \leq&C\Delta t\sum^{N-1}_{n = 0}\Big[||\theta_{\omega} ^{n+1}||^{2}+||\theta_{\omega} ^{n}||^{2}+||\theta_{y} ^{n+1}||^{2}+||\theta_{y} ^{n}||^{2}\Big]. \end{align} (4.47)

    Now, combining Eqs (4.46) and (4.47) with Eq (4.45), we arrive at

    \begin{align} ||\theta_{\omega} ^{N}||^{2}+||\nabla\theta_{y} ^{N}||^{2} \leq&C\Delta t\sum^{N-1}_{n = 0}||u_{h}^{n+\frac{1}{2}}-u^{n+\frac{1}{2}}||^{2}+\Delta t\sum^{N-1}_{n = 0}(||\theta_{\omega} ^{n+1}||^{2}+||\theta_{y} ^{n+1}||^{2}). \end{align} (4.48)

    The discrete Gronwall's inequality leads to

    \begin{align} ||\omega_{\delta}-\omega_{\delta}(u)||_{l^{\infty}(L^{2})}+||y_{\delta}-y_{\delta}(u)||_{l^{\infty}(H^{1})}\leq C||u_{\delta}-u||_{l^{2}(L^{2}(\Omega ))}. \end{align} (4.49)

    Next, we develop the inequality for \theta _{q} and \theta _{p} . Subtracting Eqs (4.10) and (4.11) from Eqs (4.34) and (4.35), we get

    \begin{align} \; &(\theta_{q} ^{n+\frac{1}{2}}, v) = \frac{1}{\Delta t}(\theta_{p} ^{n+1}-\theta_{p} ^{n}, v ), \end{align} (4.50)
    \begin{align} &\frac{1}{\Delta t}(\theta_{q} ^{n+1}-\theta_{q} ^{n}, v )+(\nabla \theta_{p} ^{n+\frac{1}{2}}, \nabla v )+(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), v) = (\theta_{y} ^{n+\frac{1}{2}}, v). \end{align} (4.51)

    Choosing v = -\theta_{q}^{n+\frac{1}{2}} as the test function in Eq (4.51), we have

    \begin{align} &\frac{1}{2\Delta t}||\theta_{q} ^{n}||^{2}-\frac{1}{2\Delta t}||\theta_{q} ^{n+1}||^{2}-(\nabla \theta_{p} ^{n+\frac{1}{2}}, \nabla \theta_{q} ^{n+\frac{1}{2}} )\\ = &(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), \theta_{q} ^{n+\frac{1}{2}})-(\theta_{y} ^{n+\frac{1}{2}}, \theta_{q} ^{n+\frac{1}{2}}). \end{align} (4.52)

    Substituting Eq (4.50) into Eq (4.52), we know

    \begin{align} &\frac{1}{2\Delta t}\Big[||\theta_{q} ^{n}||^{2}- ||\theta_{q} ^{n+1}||^{2}+ ||\nabla\theta_{p} ^{n}||^{2}- ||\nabla\theta_{p} ^{n+1}||^{2}\Big]\\ = &(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), \theta_{q} ^{n+\frac{1}{2}})-(\theta_{y} ^{n+\frac{1}{2}}, \theta_{q} ^{n+\frac{1}{2}}). \end{align} (4.53)

    By calculation, the following formula holds:

    \begin{align} &(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), \theta_{q} ^{n+\frac{1}{2}})\\ = &(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}, \; \theta_{q} ^{n+\frac{1}{2}})\\ &+ (\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), \; \theta_{q} ^{n+\frac{1}{2}}). \end{align} (4.54)

    Multiplying both sides of Eq (4.53) by 2\Delta t , then summing it over n from M to N-1 , it leads to

    \begin{align} ||\theta_{q} ^{M}||^{2}+||\nabla\theta_{p} ^{M}||^{2} & = 2\Delta t\sum\limits_{n = M}^{N-1}\bigg[(\phi'(y_{h} ^{n+\frac{1}{2}})p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}, \; \theta_{q} ^{n+\frac{1}{2}})\\ &\quad \quad\quad\quad\quad+ (\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}-\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u), \; \theta_{q} ^{n+\frac{1}{2}}) -(\theta_{y} ^{n+\frac{1}{2}}, \theta_{q} ^{n+\frac{1}{2}})\bigg]\\ &\triangleq \sum\limits_{i = 1}^{3} \Pi_{i}. \end{align} (4.55)

    Here, the estimates of \Pi_{1} , \Pi_{2} , \Pi_{3} are similar to those of \Upsilon_{1} , \Upsilon_{2} , \Upsilon_{3} , and we have

    \begin{align*} \Pi_{1}&\leq \Delta t\sum\limits_{n = M}^{N-1}||\phi'(y_{h} ^{n+\frac{1}{2}})-\phi'(y_{h} ^{n+\frac{1}{2}}(u))||_{0, 4}||p_{h} ^{n+\frac{1}{2}}||_{0, 4}||||\theta_{q} ^{n+\frac{1}{2}}||\\ &\leq C\Delta t\sum\limits_{n = M}^{N-1}(||\nabla\theta_{y}^{n+1}||^{2}+||\nabla\theta_{y}^{n}||^{2}+||\theta_{q} ^{n}||^{2}), \end{align*}
    \begin{align*} \Pi_{2}&\leq 2\Delta t\sum\limits_{n = M}^{N-1}||\phi'(y_{h} ^{n+\frac{1}{2}}(u))||_{0, \infty}||p_{h} ^{n+\frac{1}{2}}(u)-p_{h} ^{n+\frac{1}{2}}||\; ||\theta_{q} ^{n+\frac{1}{2}}||\\ &\leq C \Delta t\sum\limits_{n = M}^{N-1}(||\theta_{p} ^{n}||^{2}+||\theta_{q} ^{n}||^{2}), \\ \Pi_{3}&\leq \Delta t\sum\limits_{n = M}^{N-1}(||\nabla\theta_{y} ^{n}||+||\theta_{q} ^{n}||^{2}). \end{align*}

    Finally, inserting the above estimates of \Pi_{1} \Pi_{3} into Eq (4.55), we get

    \begin{align} ||\theta_{q} ^{M}||^{2}+||\nabla\theta_{p} ^{M}||^{2}\leq C\Delta t\sum\limits_{n = M}^{N-1}||\nabla\theta_{y} ^{n}||+C\Delta t\sum\limits_{n = M}^{N-1}(||\theta_{q} ^{n}||^{2}+||\theta_{p} ^{n}||^{2}). \end{align} (4.56)

    Thus, combine the Poincaré inequality and the discrete Gronwall's inequality, such that

    \begin{align} &||q_{\delta}-q_{\delta}(u)||_{l^{\infty}(L^{2})}+||p_{\delta}-p_{\delta}(u)||_{l^{\infty}(H^{1})}\leq C||y_{\delta}-y_{\delta}(u)||_{l^{\infty}(H^{1})}. \end{align} (4.57)

    Eqs (4.38) and (4.57) follows Eq (4.39), which also completes the proof of Lemma 4.2.

    Next, so as to estimate the error of the control discretization, we choose a local solution \bar{u} of the continuous problem (3.6)–(3.8), and an associated approximate solution u_{\delta} of the discrete problem (4.1)–(4.4). We introduce the following auxiliary problem:

    \begin{align} \min\limits_{u_{h} ^{n+\frac{1}{2}}\in U_{h}^{\iota}}\mathcal{J}_{\delta}(u_{h} ^{n+\frac{1}{2}}), \end{align} (4.58)

    where U_{h}^{\iota}(\bar{u}) = \{u_{h} ^{n+\frac{1}{2}}\in U_{h}:||u_{\delta}-\bar{u }|| < \iota\} . In addition, since \mathcal{J}''_{\delta} satisfies Lemma 4.1 for \bar{u}\in U_{h}^{\iota}(\bar{u}), \; v\in U_{ad} , the existence and uniqueness of the problem (4.58) are guaranteed; see [28].

    From the definitions of the local solution (4.6) and U_{h}^{\iota} , we can get

    \begin{align} \mathcal{J}_{\delta}(\bar{u}_{h} ^{n+\frac{1}{2}}) = \min\limits_{u_{h} ^{n+\frac{1}{2}}\in U_{h}^{\iota}(\bar{u})}\mathcal{J}_{\delta}(u_{h} ^{n+\frac{1}{2}}), \quad\quad\text{for}\quad ||u_{h} ^{n+\frac{1}{2}}-\bar{u}_{h} ^{n+\frac{1}{2}}|| < \iota. \end{align} (4.59)

    Utilizing (4.58) and (4.59), we can deduce that \bar{u}_{h} ^{n+\frac{1}{2}}\in U_{h}^{\iota} is the unique solution of the problem (4.58).

    Lemma 4.3. Let \bar{u} be a local solution of the problem (3.4) and the SSC (3.23) is valid. Then, the discrete problem (4.58) has a unique solution \bar{u}_{h} ^{n+\frac{1}{2}} , and the following estimate holds:

    \begin{align} ||\bar{u}-\bar{u}_{\delta}||_{l^{2}(L^{2}(\Omega ))} &\leq C||p-p_{\delta}(\bar{u})||^{2}_{l^{2}(L^{2})}+Ch^{2} (||\bar{u}||^{2}_{ l^{2}(H^{1}(\Omega ))}+||p||^{2}_{ l^{2}(H^{1})}). \end{align} (4.60)

    for \iota > 0, h > 0 sufficiently small.

    Proof. From Lemma 4.1, it is clear to infer that

    \begin{align*} \mathcal{ J }''_{\delta}(u_{\delta})(v, v)\geq \frac{\kappa}{4}||v||^{2}_{l^{2}(L^{2}(\Omega ))}, \; \; \text{for}\; \; \forall u_{\delta}\in U_{h}^{\iota}(\bar{u}) \; \; \text{and}\; \; v\in U_{ad}. \end{align*}

    By the FNC (4.13), we can get

    \begin{align*} &\mathcal{ J }'_{\delta}(\bar{u}^{n+\frac{1}{2}})(\bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}})\leq 0, \\ &\mathcal{ J }'_{\delta}(\bar{u}_{h}^{n+\frac{1}{2}})(\bar{u}_{h}^{n+\frac{1}{2}}-\Pi_{h}\bar{u}^{n+\frac{1}{2}})\leq 0. \end{align*}

    for h sufficiently small. Utilizing \upsilon^{n+\frac{1}{2}} = \theta \bar{u}^{n+\frac{1}{2}}+(1-\theta)\bar{u}_{h}^{n+\frac{1}{2}} with \theta\in [0, 1] , we get

    \begin{align} &\frac{\kappa}{4}|| \bar{u}-\bar{u}_{\delta}||^{2}_{l^{2}(L^{2}(\Omega ))}\\ \leq& \mathcal{ J }''_{\delta}(\upsilon^{n+\frac{1}{2}})(\bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}}, \bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}})\\ = &\mathcal{ J }'_{\delta}(\bar{u}^{n+\frac{1}{2}})(\bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}})-\mathcal{ J }'_{\delta}(\bar{u}_{h}^{n+\frac{1}{2}})(\bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}})\\ = &\Delta t\sum^{N-1}_{n = 0}\Big[(\alpha \bar{u}^{n+\frac{1}{2}}+B^{*}p_{h}^{n+\frac{1}{2}}(\bar{u}), \bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}}) -(\alpha \bar{u}_{h}^{n+\frac{1}{2}}+B^{*}p_{h}^{n+\frac{1}{2}}, \bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}} ) \Big]\\ \leq&\Delta t\sum^{N-1}_{n = 0} \bigg[(B^{*}(p_{h}^{n+\frac{1}{2}}(\bar{u})-p^{n+\frac{1}{2}}), \bar{u}^{n+\frac{1}{2}}-\bar{u}_{h}^{n+\frac{1}{2}}) +(\alpha \bar{u}_{h}^{n+\frac{1}{2}}, \Pi_{h}\bar{u}^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}} ) \\ &\quad\quad\quad+ (B^{*}p^{n+\frac{1}{2}}, \Pi_{h}\bar{u}^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}} ) + (B^{*}(p^{n+\frac{1}{2}}-p_{h}^{n+\frac{1}{2}}(\bar{u})), \bar{u}^{n+\frac{1}{2}}-\Pi_{h}\bar{u}^{n+\frac{1}{2}}) \\ &\quad\quad\quad+ (B^{*}(p_{h}^{n+\frac{1}{2}}(\bar{u})-p_{h}^{n+\frac{1}{2}}), \bar{u}^{n+\frac{1}{2}}-\Pi_{h}\bar{u}^{n+\frac{1}{2}}) \bigg]\\ \triangleq&\sum\limits_{i = 1}^{5} \mathcal{S}_{i}. \end{align} (4.61)

    To start, using the Cauchy-Schwarz inequality, we obtain

    \begin{align*} \mathcal{S}_{1}\leq C||p-p_{\delta}(\bar{u})||^{2}_{l^{2}(L^{2})}+\epsilon|| \bar{u}-\bar{u}_{\delta}||^{2} _{l^{2}(L^{2}(\Omega ))}. \end{align*}

    For the \mathcal{S}_{2} and \mathcal{S}_{3} , by the definition of the operator \Pi_{h} , we have

    \begin{align*} \mathcal{S}_{2} = 0, \end{align*}

    and

    \begin{align*} \mathcal{S}_{3} = & \sum^{N-1}_{n = 0}\Delta t(B^{*}(p^{n+\frac{1}{2}}-\Pi_{h}p^{n+\frac{1}{2}}, \Pi_{h}\bar{u}^{n+\frac{1}{2}}-\bar{u}^{n+\frac{1}{2}} )\\ \leq&Ch^{2} (||p||^{2}_{ l^{2}(0, T;H^{I}(\Omega))}+||\bar{ u}||^{2}_{ l^{2}(0, T;H^{1}(\Omega ))}). \end{align*}

    Then, for the \mathcal{S}_{4} and \mathcal{S}_{5} , from Lemma 4.2 and the Cauchy inequality, it yields

    \begin{align*} & \mathcal{S}_{4}\leq C||p-p_{\delta}(\bar{u})||^{2}_{l^{2}(L^{2})}+Ch^{2} ||\bar{u}||^{2}_{ l^{2}(0, T;H^{I}(\Omega ))}, \end{align*}
    \begin{align*} \mathcal{S}_{5}\leq &\epsilon|| \bar{u}-\bar{u}_{\delta}||^{2} _{l^{2}(L^{2}(\Omega ))}+Ch^{2} ||\bar{u}||^{2}_{ l^{2}(0, T;H^{I}(\Omega ))}. \end{align*}

    Substituting \mathcal{S}_{1} \mathcal{S}_{5} into Eq (4.61), we obtain

    \begin{align*} &|| \bar{u}-\bar{u}_{\delta}||^{2}_{ l^{2}(0, T;L^{2}(\Omega ))}\\ \leq &C||p-p_{\delta}(\bar{u})||^{2}_{l^{2}(L^{2})}+Ch^{2} (||\bar{u}||^{2}_{l^{2}(0, T;H^{I}(\Omega ))}+||p||^{2}_{ l^{2}(0, T;H^{I}(\Omega))}). \end{align*}

    This completes the proof of Lemma 4.3.

    In this subsection, we will establish the error caused by the discretization of the Crank-Nicolson FEM scheme. To do this, we define the error function as

    \begin{align*} e^{n}_{\omega} = \omega(t_{n})-\omega^{n}_{h}(u), \; e^{n}_{y} = y(t_{n})-y^{n}_{h}(u), \; e^{n}_{q} = q(t_{n})-q^{n}_{h}(u), \; e_{p}^{n} = p(t_{n})-p^{n}_{h}(u), \end{align*}

    and introduce the following truncation errors:

    \begin{align*} &\mathcal{T}_{\omega} = \omega(t_{n+1})-\omega(t_{n})-\Delta t \omega_{t}(t_{n+\frac{1}{2}}), \; \; \eta_{\omega} = \frac{\omega(t_{n+1})+\omega(t_{n})}{2}-\omega(t_{n+\frac{1}{2}}), \\ &\mathcal{T}_{y} = y(t_{n+1})-y(t_{n})-\Delta t y_{t}(t_{n+\frac{1}{2}}), \; \; \eta _{y} = \frac{y(t_{n+1})+y(t_{n})}{2}-y(t_{n+\frac{1}{2}}), \\ &\mathcal{T}_{q} = q(t_{n+1})-q(t_{n})-\Delta t q_{t}(t_{n+\frac{1}{2}}), \; \; \eta_{q} = \frac{q(t_{n+1})+q(t_{n})}{2}-q(t_{n+\frac{1}{2}}), \\ &\mathcal{T}_{p} = p(t_{n+1})-p(t_{n})-\Delta t p_{t}(t_{n+\frac{1}{2}}), \; \; \eta _{p} = \frac{p(t_{n+1})+p(t_{n})}{2}-p(t_{n+\frac{1}{2}}). \end{align*}

    For these definitions, we first present the following estimates of the truncation error.

    Lemma 4.4. The following estimates hold:

    \begin{align*} &||\mathcal{T}_{\omega}||^{2}\leq C(\Delta t)^{5}\int_{t_{n}}^{t_{n+1}}||\omega_{ttt} ||^{2}ds, \; \; ||\eta_{\omega}||^{2}\leq C(\Delta t)^{3}\int_{t_{n}}^{t_{n+1}}||\omega_{tt} ||^{2}ds, \\ &||\mathcal{T}_{y}||^{2}\leq C(\Delta t)^{5}\int_{t_{n}}^{t_{n+1}}||y_{ttt} ||^{2}ds, \; \; ||\eta_{y}||^{2}\leq C(\Delta t)^{3}\int_{t_{n}}^{t_{n+1}}||y_{tt} ||^{2}ds, \\ &||\mathcal{T}_{q}||^{2}\leq C(\Delta t)^{5}\int_{t_{n}}^{t_{n+1}}||q_{ttt} ||^{2}ds, \; \; ||\eta_{q}||^{2}\leq C(\Delta t)^{3}\int_{t_{n}}^{t_{n+1}}||q_{tt} ||^{2}ds, \\ &||\mathcal{T}_{p}||^{2}\leq C(\Delta t)^{5}\int_{t_{n}}^{t_{n+1}}||p_{ttt} ||^{2}ds, \; \; ||\eta_{p}||^{2}\leq C(\Delta t)^{3}\int_{t_{n}}^{t_{n+1}}||p_{tt} ||^{2}ds. \end{align*}

    Lemma 4.5. Let (\omega, y, u, q, p) and (\omega_{\delta}(u), y_{\delta}(u), q_{\delta}(u), p_{\delta}(u)) be the solutions of Eqs (3.6)–(3.7) and Eqs (4.31)–(4.36), respectively. Assume that \omega, \; q\in L^{2}(H^{2})\cap H^{1}(H^{2}), \; \omega_{tt}, \; q_{tt}\in L^{2}(H^{1}), y_{tt}\in L^{2}(L^{2})\cap L^{2}(H^{1})\cap L^{2}(H^{2}), p_{tt}\in L^{2}(L^{2})\cap L^{2}(H^{2}), \omega_{ttt}, \; q_{ttt}\in L^{2}(L^{2}), \; y_{ttt}, \; p_{ttt}\in L^{2}(H^{1}), y_{0}(x), \; g(x)\in H^{2}(\Omega) . Then, we have

    \begin{align} &||\omega_{\delta}(u)-\omega||_{l^{\infty}(L^{2})}+||y_{\delta}(u)-y||_{l^{\infty}(H^{1})}\leq C((\Delta t)^{2}+h), \end{align} (4.62)
    \begin{align} &||q_{\delta}(u)-q||_{l^{\infty}(L^{2})}+|| p_{\delta}(u)-p||_{l^{\infty}(H^{1})}\leq C((\Delta t)^{2}+h). \end{align} (4.63)

    Proof. From Eq (3.7), the exact solution (\omega, y) satisfies

    \begin{align} &\frac{1}{2}(\omega(t_{n+1})+\omega(t_{n}), v_{h}) = (\frac{y(t_{n+1})-y(t_{n})}{\Delta t}, v_h)-\frac{1}{\Delta t}(T_{y}, v_{h})+(\eta_{\omega}, v_{h}), \end{align} (4.64)
    \begin{align} &(\frac{\omega(t_{n+1})-\omega(t_{n})}{\Delta t}, v_{h})+(\nabla \frac{y(t_{n+1})+y(t_{n})}{2}, \nabla v_{h})+(\phi (y(t_{n+\frac{1}{2}}) ), v_{h})\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; = (f(t_{n+\frac{1}{2}})+Bu(t_{n+\frac{1}{2}}), v_{h})+\frac{1}{\Delta t}(T_{\omega}, v_{h})+(\nabla \eta_{y}, \nabla v_{h}). \end{align} (4.65)

    From relations Eqs (4.64) and (4.65) and Eqs (4.31) and (4.32), it holds that

    \begin{align} &(e_{\omega}^{n+\frac{1}{2}}, v_{h}) = \frac{1}{\Delta t}(e_{y}^{n+1}-e_{y}^{n}, v_{h})-\frac{1}{\Delta t}(T_{y}, v_{h})+(\eta_{\omega}, v_{h}), \end{align} (4.66)
    \begin{align} &(e_{\omega}^{n+1}-e_{\omega}^{n}, v_{h} )+\Delta t(\nabla e_{y}^{n+\frac{1}{2}}, \nabla v_{h} ) = \Delta t(\phi(y_{h} ^{n+\frac{1}{2}}(u))-\phi(y ^{n+\frac{1}{2}}), v_{h})+(T_{\omega}, v_{h})+\Delta t(\nabla \eta_{y}, \nabla v_{h}). \end{align} (4.67)

    Taking the discrete inner product of Eq (4.67) with v_h = \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u) = \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega(t_{n+\frac{1}{2}}) +\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u) = \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega(t_{n+\frac{1}{2}})+e^{n+\frac{1}{2}}_{\omega} and rearranging the terms, we have

    \begin{align} &\frac{1}{2}||e_{\omega}^{n+1}||^{2}-\frac{1}{2}||e_{\omega}^{n}||^{2}+(\nabla e_{y}^{n+\frac{1}{2}}, \nabla e_{\omega}^{n+\frac{1}{2}})\Delta t \\ = &(e_{\omega}^{n+1}-e_{\omega}^{n}, \omega(t_{n+\frac{1}{2}})-\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})) +(\nabla e_{y}^{n+\frac{1}{2}}, \nabla(\omega(t_{n+\frac{1}{2}})-\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})))\Delta t\\ &+(\phi(y_{h} ^{n+\frac{1}{2}}(u))-\phi(y ^{n+\frac{1}{2}}), \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))\Delta t\\ &+(T_{\omega}, \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))+(\nabla \eta_{y}, \nabla(\mathcal{R}_{h} \omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u)))\Delta t. \end{align} (4.68)

    Meanwhile, choosing v_h = e_{y}^{n+\frac{1}{2}} in Eq (4.66), we obtain

    \begin{align} \Delta t(e_{\omega}^{n+\frac{1}{2}}, e_{y}^{n+\frac{1}{2}}) = (e_{y}^{n+1}-e_{y}^{n}, e_{y}^{n+\frac{1}{2}})-(T_{y}^{n}, e_{y}^{n+\frac{1}{2}})+\Delta t(\eta_{\omega}, e_{y}^{n+\frac{1}{2}}). \end{align} (4.69)

    Through Eqs (4.68) and (4.69), and summing from n = 0 up to N 1 , we have that

    \begin{align} &\frac{1}{2}\Big[||e_{\omega}^{N}||^{2}+||\nabla e_{y}^{N}||^{2}-||e_{\omega}^{0}||^{2}-||\nabla e_{y}^{0}||^{2}\Big]\\ = &\sum\limits_{n = 0}^{N-1}\bigg[(e_{\omega}^{n+1}-e_{\omega}^{n}, \omega(t_{n+\frac{1}{2}})-\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})) + (\nabla e_{y}^{n+\frac{1}{2}}, \nabla(\omega(t_{n+\frac{1}{2}})-\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})))\Delta t\\ &\quad\quad+ (\phi(y_{h} ^{n+\frac{1}{2}}(u))-\phi(y (t_{n+\frac{1}{2}})), \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))\Delta t +(T_{\omega}, \mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))\\ &\quad\quad- \Delta t(\Delta\eta_{y}, \mathcal{R}_{h} \omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))) + (\nabla T_{y}, \nabla e_{y}^{n+\frac{1}{2}})- \Delta t(\nabla\eta_{\omega}, \nabla e_{y}^{n+\frac{1}{2}})\bigg]\\ \triangleq&\sum\limits_{i = 1}^{7}\Theta_{i}. \end{align} (4.70)

    By utilizing Young's and H \ddot{o} lder inequalities, we have

    \begin{align*} \Theta_{1} = &\Delta t\sum^{N-1}_{n = 0}(d_{t}\omega^{n+1}-\mathcal{R}_{h}d_{t}\omega^{n+1}, \omega(t_{n+\frac{1}{2}})-\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}}))\\ \leq&Ch^{4}(||\omega||^{2}_{L^{2}(H^{2})}+||\omega||^{2}_{H^{1}(H^{2})}), \\ \Theta_{2}\leq&C \sum^{N-1}_{n = 0}\Delta t||\nabla e_{y}^{n+1}||^{2}+Ch^{2}||\omega||^{2}_{L^{2}(H^{2})}, \\ \Theta_{3}\leq&C \sum^{N-1}_{n = 0}\Delta t(||e_{y}^{n+1}||^{2}+||e_{\omega}^{n+1}||^{2})+Ch^{4}||\omega||^{2}_{L^{2}(H^{2})}. \end{align*}

    For \Theta_{4} \Theta_{7} , by definition of the truncation error and Lemma 4.4, it can be obtained that

    \begin{align*} \Theta_{4}\leq& \frac{1}{\Delta t}\sum^{N-1}_{n = 0}||T_{\omega}||^{2}+\Delta t\sum^{N-1}_{n = 0}||\mathcal{R}_{h}\omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))||^{2}\\ \leq &C(\Delta t)^{4}||\omega_{ttt}||^{2}_{L^{2}(L^{2})}+Ch^{4}||\omega||^{2}_{L^{2}(H^{2})}+C \sum^{N-1}_{n = 0}\Delta t||e_{\omega}^{n+1}||^{2}, \\ \Theta_{5}\leq& \sum^{N-1}_{n = 0}\Delta t||\Delta \eta_{y}|||| \mathcal{R}_{h} \omega(t_{n+\frac{1}{2}})-\omega^{n+\frac{1}{2}}_{h}(u))||\\ \leq&C (\Delta t)^{4}||y_{tt}||^{2}_{L^{2}(H^{2})}+C \sum^{N-1}_{n = 0}\Delta t|| e_{\omega}^{n+1}||^{2}+Ch^{4}||\omega||^{2}_{L^{2}(H^{2})}, \\ \Theta_{6}\leq &C(\Delta t)^{4}||y_{ttt}||^{2}_{L^{2}(H^{1})}+C \sum^{N-1}_{n = 0}\Delta t||\nabla e_{y}^{n+1}||^{2}, \\ \Theta_{7}\leq &C(\Delta t)^{4}||\omega_{tt}||^{2}_{L^{2}(H^{1})}+C \sum^{N-1}_{n = 0}\Delta t||\nabla e_{y}^{n+1}||^{2}. \end{align*}

    Substituting \Theta_{1} \Theta_{7} into Eq (4.70), we get

    \begin{align} \frac{1}{2}||e_{\omega}^{N}||^{2}+\frac{1}{2}||\nabla e_{y}^{N}||^{2} \leq& \frac{1}{2}||e_{\omega}^{0}||^{2}+\frac{1}{2}||\nabla e_{y}^{0}||^{2}+C \sum^{N-1}_{n = 0}\Delta t(||\nabla e_{y}^{n+1}||^{2}+|| e_{\omega}^{n+1}||^{2})\\ &+Ch^{4}(||\omega||^{2}_{L^{2}(H^{2})}+||\omega||^{2}_{H^{1}(H^{2})})+Ch^{2}||\omega||^{2}_{L^{2}(H^{2})}\\ &+C(\Delta t)^{4}(||\omega_{ttt}||^{2}_{L^{2}(L^{2})}+||y_{ttt}||^{2}_{L^{2}(H^{1})}+||\omega_{tt}||^{2}_{L^{2}(H^{1})}+||y_{tt}||^{2}_{L^{2}(H^{2})}). \end{align} (4.71)

    Note that

    \begin{align*} \frac{1}{2}||e_{\omega}^{0}||^{2}+\frac{1}{2}||\nabla e_{y}^{0}||^{2}& = \frac{1}{2}||g(x)-\mathcal{R}_{h}g(x)||^{2}+\frac{1}{2}||\nabla (y_{0}(x)-\mathcal{R}_{h}y_{0}(x)||^{2}\\ &\leq C h^{4}||g(x)||_{H^{2}}^{2}+Ch^{2}||y_{0}(x)||_{H^{2}}^{2} \end{align*}

    Then, the discrete Gronwall's inequality implies that

    \begin{align*} ||\omega_{\delta}(u)-\omega||_{l^{\infty}(L^{2})}+||y_{\delta}(u)-y||_{l^{\infty}(H^{1})}\leq C(h+(\Delta t)^{2}). \end{align*}

    Furthermore, from Eq (3.7), we can find that the exact solution (p, q) satisfies

    \begin{align} &(\frac{q(t_{n+1})+q(t_{n})}{2}, v) = (\frac{p(t_{n+1})-p(t_{n})}{\Delta t}, v)-\frac{1}{\Delta t}(T_{p}, v)+(\eta_{q}, v), \end{align} (4.72)
    \begin{align} &(\frac{q(t_{n+1})-q(t_{n})}{\Delta t}, v)+(\nabla\frac{p(t_{n+1})+p(t_{n})}{2}, \nabla v)+(\phi'(y(t_{n+\frac{1}{2}})p(t_{n+\frac{1}{2}}), v)\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; = (\frac{y(t_{n+1})+y(t_{n})}{2}-y_{d}(t_{n+\frac{1}{2}}), v)-(\eta_{y}, v)+\frac{1}{\Delta t}(T_{q}, v)-(\Delta\eta_{p}, v). \end{align} (4.73)

    From relations Eqs (4.72) and (4.73) and Eqs (4.34) and (4.35), we have

    \begin{align} &(e_{q}^{n+\frac{1}{2}}, v_{h}) = \frac{1}{\Delta t}(e_{p}^{n+1}-e_{p}^{n}, v_{h})-\frac{1}{\Delta t}(T_{p}, v_{h})+(\eta_{q}, v_{h}), \end{align} (4.74)
    \begin{align} &\frac{1}{\Delta t}(e_{q}^{n+1}-e_{q}^{n}, v_{h})+( \nabla e_{p}^{n+\frac{1}{2}}, \nabla v_{h} ) = (\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u)-\phi'(y(t_{n+\frac{1}{2}})p(t_{n+\frac{1}{2}}), v_{h} )\\ &\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; +(e_{y}^{n+\frac{1}{2}}, v_{h})+\frac{1}{\Delta t}(T_{q}, v_{h})-(\Delta\eta_{p}, v_{h})-(\eta_{y}, v_{h}). \end{align} (4.75)

    Choosing v_{h} = -(\mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u)) = q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}})-e_{q}^{n+\frac{1}{2}} in Eq (4.75), we have

    \begin{align} &\frac{1}{2}(||e_{q}^{n}||^{2}-||e_{q}^{n+1}||^{2})-\Delta t( \nabla e_{p}^{n+\frac{1}{2}}, \nabla e_{q}^{n+\frac{1}{2}} )\\ = &(e_{q}^{n}-e_{q}^{n+1}, q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}}))+\Delta t( \nabla e_{p}^{n+\frac{1}{2}}, \nabla(q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}})))\\ &+\Delta t(\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u)-\phi'(y(t_{n+\frac{1}{2}})p(t_{n+\frac{1}{2}}), q_{h}^{n+\frac{1}{2}}(u)-\mathcal{R}_{h}^{n+\frac{1}{2}})\\ &-(T_{q}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u))+\Delta t(\Delta\eta_{p}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u)))\\ &+\Delta t(\eta_{y}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u))+\Delta t(e_{y}^{n+\frac{1}{2}}, q_{h}^{n+\frac{1}{2}}(u)-\mathcal{R}_{h}q(t_{n+\frac{1}{2}})). \end{align} (4.76)

    Meanwhile, letting v_{h} = -e_{p}^{n+\frac{1}{2}} in Eq (4.74), we get

    \begin{align} -\Delta t(e_{q}^{n+\frac{1}{2}}, e_{p}^{n+\frac{1}{2}}) = -(e_{p}^{n+1}-e_{p}^{n}, e_{p}^{n+\frac{1}{2}})+(T_{p}, e_{p}^{n+\frac{1}{2}})-\Delta t(\eta_{q}, e_{p}^{n+\frac{1}{2}}). \end{align} (4.77)

    Combining Eqs (4.76) and (4.77), then summing from n = M to N-1 , it can conclude that

    \begin{align} &\frac{1}{2}||e_{q}^{M}||^{2}+\frac{1}{2}|| \nabla e_{p}^{M}||^{2}\\ = &\sum^{N-1}_{n = M}\bigg[(e_{q}^{n}-e_{q}^{n+1}, q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}}))+\Delta t( \nabla e_{p}^{n+\frac{1}{2}}, \nabla(q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}})))\\ &\; \; \; \; \; \; \; + \Delta t(\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u)-\phi'(y(t_{n+\frac{1}{2}})p(t_{n+\frac{1}{2}}), q_{h}^{n+\frac{1}{2}}(u)-\mathcal{R}_{h}q(t_{n+\frac{1}{2}}))\\ &\; \; \; \; \; \; \; - (T_{q}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u))+ \Delta t(\Delta\eta_{p}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u)))\\ &\; \; \; \; \; \; \; - (\nabla T_{p}, \nabla e_{p}^{n+\frac{1}{2}})+ \Delta t(\nabla\eta_{q}, \nabla e_{p}^{n+\frac{1}{2}}) +\Delta t(\eta_{y}, \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u))\\ &\; \; \; \; \; \; \; +\Delta t(e_{y}^{n+\frac{1}{2}}, q_{h}^{n+\frac{1}{2}}(u)-\mathcal{R}_{h}q(t_{n+\frac{1}{2}}))\bigg]\\ \triangleq& \sum\limits_{i = 1}^{9}\mathcal{Y}_{i}. \end{align} (4.78)

    By the properties of L^{2} projection, we have

    \begin{align*} \mathcal{Y}_{1} = &\sum^{N-1}_{n = M}\Delta t(\bar{d}_{t}q^{n}-\mathcal{R}_{h}\bar{d}_{t}q^{n}, q(t_{n+\frac{1}{2}})-\mathcal{R}_{h}q(t_{n+\frac{1}{2}}))\\ \leq &Ch^{4}(||q||^{2}_{L^{2}(H^{2})}+||q||^{2}_{H^{1}(H^{2})}), \\ \mathcal{Y}_{2}\leq&C \sum^{N-1}_{n = M}\Delta t||\nabla e_{p}^{n}||^{2}+Ch^{2}||q||^{2}_{L^{2}(H^{2})}. \end{align*}

    A standard algebraic manipulation implies that

    \begin{align*} &\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u)-\phi'(y(t_{n+\frac{1}{2}}))p(t_{n+\frac{1}{2}})\\ = &\phi'(y_{h} ^{n+\frac{1}{2}}(u))p_{h} ^{n+\frac{1}{2}}(u)-\phi'(y_{h} ^{n+\frac{1}{2}}(u))\frac{p(t_{n+1})+p(t_{n})}{2}\\ &+\phi'(y_{h} ^{n+\frac{1}{2}}(u))(\frac{p(t_{n+1})+p(t_{n})}{2})-\phi'(\frac{y(t_{n+1})+y(t_{n})}{2}) \frac{p(t_{n+1})+p(t_{n})}{2}\\ &+\phi'(\frac{y(t_{n+1})+y(t_{n})}{2}) \frac{p(t_{n+1})+p(t_{n})}{2}-\phi'(\frac{y(t_{n+1})+y(t_{n})}{2})p(t_{n+\frac{1}{2}})\\ &+\phi'(\frac{y(t_{n+1})+y(t_{n})}{2})p(t_{n+\frac{1}{2}})-\phi'(y(t_{n+\frac{1}{2}}))p(t_{n+\frac{1}{2}}). \end{align*}

    For the bound of \mathcal{Y}_{3} , it holds

    \begin{align*} \mathcal{Y}_{3} \leq& C \sum^{N-1}_{n = M}\Delta t(|| e_{p}^{n}||^{2}+|| e_{q}^{n}||^{2}) +C(\Delta t)^{4}(||y_{tt}||^{2}_{L^{2}(H^{1})}+||p_{tt}||^{2}_{L^{2}(L^{2})})\\ &+Ch^{4}||q||^{2}_{L^{2}(H^{2})}+C||y-y_{\delta}(u)||^{2}_{l^{2}(H^{1})}. \end{align*}

    Then, for \mathcal{Y}_{4} \mathcal{Y}_{9} , noting that \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q_{h}^{n+\frac{1}{2}}(u) = \mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q(t_{n+\frac{1}{2}})+e_{q}^{n+\frac{1}{2}} and applying Lemma 4.4, we have

    \begin{align*} \mathcal{Y}_{4}\leq& \frac{1}{\Delta t}\sum^{N-1}_{n = M}||T_{q}||^{2}+\Delta t\sum^{N-1}_{n = M}||\mathcal{R}_{h}q(t_{n+\frac{1}{2}})-q^{n+\frac{1}{2}}_{h}(u))||^{2}\\ \leq &C(\Delta t)^{4}||q_{ttt}||^{2}_{L^{2}(L^{2})}+Ch^{4}||q||^{2}_{L^{2}(H^{2})}+C\sum^{N-1}_{n = M}\Delta t||e_{q}^{n}||^{2}, \end{align*}
    \begin{align*} \mathcal{Y}_{5}\leq& \sum^{N-1}_{n = M}\Delta t||\Delta \eta_{p}|||| \mathcal{R}_{h} q(t_{n+\frac{1}{2}})-q^{n+\frac{1}{2}}_{h}(u))||\\ \leq& C(\Delta t)^{4}||p_{tt}||^{2}_{L^{2}(H^{2})}+C\sum^{N-1}_{n = M}\Delta t|| e_{q}^{n}||^{2}+Ch^{4}||q||^{2}_{L^{2}(H^{2})}, \\ \mathcal{Y}_{6}\leq &C(\Delta t)^{4}||p_{ttt}||^{2}_{L^{2}(H^{1})}+C\sum^{N-1}_{n = M}\Delta t||\nabla e_{p}^{n}||^{2}, \\ \mathcal{Y}_{7}\leq &C(\Delta t)^{4}||q_{tt}||^{2}_{L^{2}(H^{1})}+C\sum^{N-1}_{n = M}\Delta t||\nabla e_{p}^{n}||^{2}, \\ \mathcal{Y}_{8}\leq & C(\Delta t)^{4}||y_{tt}||^{2}_{L^{2}(L^{2})}+C\sum^{N-1}_{n = M}\Delta t|| e_{q}^{n}||^{2}+Ch^{4}||q||^{2}_{L^{2}(H^{2})}, \\ \mathcal{Y}_{9}\leq & C||y-y_{\delta}(u)||^{2}_{l^{2}(H^{1})}+C\sum^{N-1}_{n = M}\Delta t|| e_{q}^{n}||^{2}+Ch^{4}||q||^{2}_{L^{2}(H^{2})}. \end{align*}

    Collecting the above bounds and using the discrete Gronwall's inequality, we deduce that

    \begin{align} &||q_{\delta}(u)-q||^{2}_{l^{\infty}(L^{2})}+|| p_{\delta}(u)-p||^{2}_{l^{\infty}(H^{1})}\\ \leq& C(\Delta t)^{4}(||p_{tt}||^{2}_{L^{2}(L^{2})}+||p_{tt}||^{2}_{L^{2}(H^{2})}+||y_{tt}||^{2}_{L^{2}(H^{1})}+||y_{tt}||^{2}_{L^{2}(L^{2})}+||q_{tt}||^{2}_{L^{2}(H^{1})})\\ +& C(\Delta t)^{4}(||q_{ttt}||^{2}_{L^{2}(L^{2})}+||p_{ttt}||^{2}_{L^{2}(H^{1})})+Ch^{4}(||q||^{2}_{L^{2}(H^{2})}+||q||^{2}_{H^{1}(H^{2})})\\ +&Ch^{2}||q||^{2}_{L^{2}(H^{2})}+C||y-y_{\delta}(u)||^{2}_{l^{2}(H^{1})}. \end{align} (4.79)

    The proof of Eq (4.63) can be completed by combining Eq (4.79) with Eq (4.62).

    Above all, the error of the Crank-Nicolson scheme (4.7)–(4.13) is given by the following theorem.

    Theorem 4.2. Let (\omega, y, \bar{u}, q, p) and (\omega_{\delta}, y_{\delta}, \bar{u}_{\delta}, q_{\delta}, p_{\delta}) be the local solutions of Eqs (3.6)–(3.8) and Eqs (4.7)–(4.13), respectively. Moreover, we assume that all conditions in Lemmas 4.2–4.5 are valid. Then, we have

    \begin{align*} &|| \omega-\omega_{\delta}||_{l^{\infty}(L^{2})}+|| y-y_{\delta}||_{l^{\infty}(H^{1})}\\ &+|| q-q_{\delta}||_{l^{\infty}(L^{2})}+|| p-p_{\delta}||_{l^{\infty}(H^{1})}\\ &+||\bar{u}-\bar{u}_{\delta}||_{l^{2}(L^{2}(\Omega ))}\leq C(h+(\Delta t)^{2} ). \end{align*}

    In this section, we provide a numerical example to verify the theoretical results, which will consider the following nonlinear SOHOCPs:

    \begin{align*} \min\frac{1}{2}&\int_{0}^{1}\int_{\Omega}(y-y_{d})^{2}dx+\int_{\Omega}u^{2}dx, \\ &s.t.\; \; y_{tt}-\Delta y+y^{3} = f+u. \end{align*}

    We adopt the same mesh triangular partition for the state and control. Furthermore, we choose

    \begin{align*} \Omega& = (0, 1)\times(0, 1), \; T = 1, \; u_{a} = -1, \; u_{b} = 5, \\ y_{d}& = (e^{t}+2+2\pi^{2}(t-T)^{2})\sin \pi x_{1}\sin \pi x_{2}+3e^{2t}(t-T)^{2}(\sin \pi x_{1}\sin \pi x_{2})^{3}, \\ f& = (1+2\pi ^{2})e^{t}\sin \pi x_{1}\sin \pi x_{2}+e^{3t}(\sin \pi x_{1}\sin \pi x_{2})^{3}\\ &\quad-\max\{u_{a}, \min \{u_{b}, (t-T)^{2}\sin \pi x_{1}\sin \pi x_{2}\}\}. \end{align*}

    such that the exact (y, u, p) is

    \begin{align*} y& = e^{t}\sin \pi x_{1}\sin \pi x_{2}, \\ u& = \max\{u_{a}, \min \{u_{b}, (t-T)^{2}\sin \pi x_{1}\sin \pi x_{2}\}\}, \\ p& = -(t-T)^{2}\sin \pi x_{1}\sin \pi x_{2}. \end{align*}

    We show the convergence results of the Crank-Nicolson scheme in Table 1. The profile of the exact (y, p, u) is drawn in Figure 1. The simulated results for the second-order scheme is presented in Figure 2.

    Table 1.  Numerical results of the Crank-Nicolson scheme ( h = \Delta t^2 ).
    \Delta t || y-y_{\delta}||_{l^{\infty}(H^{1}(\Omega))} Rate || p-p_{\delta}||_{l^{\infty}(H^{1}(\Omega))} Rate || u-u_{\delta}||_{l^{2}(L^{2}(\Omega))} Rate
    1/2 1.7731332397 0.6737539940 0.0349163048
    1/4 0.4450851439 1.9941 0.1680451731 2.0033 0.0056814014 2.6195
    1/8 0.1111334138 2.0017 0.0414201514 2.0204 0.0013428612 2.0809
    1/16 0.0277721376 2.0005 0.0103092780 2.0063 0.0003323956 2.0143
    1/32 0.0069422975 2.0001 0.0025741990 2.0017 0.0000831732 1.9987

     | Show Table
    DownLoad: CSV
    Figure 1.  The exact (y, p, u) with t = 0.5 .
    Figure 2.  The approximate ( y_{\delta}, p_{\delta}, u_{\delta} ) computed by the Crank-Nicolson scheme at t = 0.5 .

    From Table 1, it implies that the numerical results are consistent with the theoretical results. From Figure 1 and Figure 2, we can see the Crank-Nicolson scheme is efficient.

    This paper presents a second-order fully discrete scheme for nonlinear SOHOCPs and, in conjunction with auxiliary problems, derives a priori error estimates. Furthermore, a numerical experiment is conducted to confirm the convergence order of the theoretical results.

    In [31], Li et al. established a mixed-form discrete scheme for the nonlinear stochastic wave equations (SWEs) with multiplicative noise by defining a new variable. In [32], Sonawane et al. studied the existence of an optimal control problem for the bilinear SWEs. In the future, we plan to consider the method based on the definition of the new variable mentioned in this paper and in [31]. We will apply this method to the optimization system described in [32] and further conduct an error analysis of the resulting discrete scheme.

    Huanhuan Li was responsible for the methodology and writing the original draft. Meiling Ding contributed the software. Xianbing Luo handled the review, editing, and supervision. Shuwen Xiang oversaw the supervision and validation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work is supported by the National Natural Science Foundation of China (Granted No. 11961008) and Guizhou University Doctoral Foundation (Granted NO. 15 (2022)).

    The authors declare there is no conflict of interest.



    [1] Adhami S, Giudici G, Martinazzi S (2018) Why do businesses go crypto? An empirical analysis of Initial Coin Offerings. J Econ Bus 100: 64-75. doi: 10.1016/j.jeconbus.2018.04.001
    [2] Ahlers GK, Cumming D, Günther C, et al. (2015) Signaling in equity crowdfunding. Entrep Theory Pract 39: 955-980. doi: 10.1111/etap.12157
    [3] Agrawal AK, Catalini C, Goldfarb A (2010) The geography of crowdfunding. NBER working paper No. w16820.
    [4] Akerlof GA (1970) The market for "lemons": Quality uncertainty and the market mechanism. Q J Econ 84: 488-500. doi: 10.2307/1879431
    [5] Amsden R, Schweizer D (2018) Are Blockchain Crowdsales the New 'Gold Rush'? Success Determinants of Initial Coin Offerings. Working paper.
    [6] Anglin AH, Short JC, Drover W, et al. (2018) The power of positivity? The influence of positive psychological capital language on crowdfunding performance. J Bus Ventur 33: 470-492. doi: 10.1016/j.jbusvent.2018.03.003
    [7] Ante L (2018) Cryptocurrency, Blockchain and Crime, In McCarthy, K. (ed.), The Money Laundering Market: Regulating the criminal economy, Agenda Publishing, 171-198.
    [8] Ante L, Sandner P, Fiedler I (2018) Blockchain-based ICOs: Pure Hype or the Dawn of a New Era of Startup Financing? J Risk Financ Manag 11: 80.
    [9] Ante L (2019) Market reaction to exchange listings of cryptocurrencies. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3450301.
    [10] Ante L, Meyer A (2019) Cross‐listings of blockchain‐based tokens issued through initial coin offerings: do liquidity and specific cryptocurrency exchanges matter? BRL Working Paper No. 5
    [11] Ante L (2020) A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics. Scientometrics 124: 1-29. doi: 10.1007/s11192-020-03436-2
    [12] Ante L (2020b) Smart Contracts on the Blockchain—A Bibliometric Analysis and Review. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3576393.
    [13] Ante L (2020c) Bitcoin transactions, information asymmetry and trading volume. Quant Financ Econ 4: 365-381. doi: 10.3934/QFE.2020017
    [14] Ante L, Fiedler I (2020) Market Reaction to Large Transfers on the Bitcoin Blockchain-Do Size and Motive Matter? Financ Res Let [In Press].
    [15] BaFin (2017) Bundesanstalt für Finanzaufsicht. Hinweisschreiben (WA) GZ: WA 11-QB 4100-2017/0010 Aufsichtsrechtliche Einordnung von sog. Initial Coin Offerings (ICOs) zugrundeliegenden Token bzw. Kryptowä hrungen als Finanzinstrumente im Bereich der Wertpapieraufsicht. Available from: https://www.bafin.de/SharedDocs/Downloads/DE/Merkblatt/WA/dl_hinweisschreiben_einordnung_ICOs.pdf?_blob=publicationFile&v=2.
    [16] Baker M, Wurgler J (2002) Market timing and capital structure. J Financ 57: 1-32. doi: 10.1111/1540-6261.00414
    [17] Batiz-Benet J, Santori M, Clayburgh J (2017) The SAFT Project: Toward a Compliant Token Sale Framework. SAFT Project White Paper, Cooley. Available from: https://saftproject.com/static/SAFT-Project-Whitepaper.pdf.
    [18] Baydakova (2018) Binance Partners with Malta to Launch Security Token Trading Platform. Available from: https://www.coindesk.com/binance-partners-with-malta-to-launch-security-token-trading-platform.
    [19] Becker GS (1968) Crime and Punishment: An Economic Approach. J Polit Econ 76: 169-217. doi: 10.1086/259394
    [20] Becker GS (1993) Nobel Lecture: The Economic Way of Looking at Behavior. J Polit Econ 101: 385-409. doi: 10.1086/261880
    [21] eatty RP (1989) Auditor reputation and the pricing of initial public offerings. Account Rev 64: 693-709.
    [22] Bhattacharya S (1979) Imperfect information, dividend policy, and "the bird in the hand" fallacy. Bell J Econ 10: 259-270. doi: 10.2307/3003330
    [23] Bogusz CI, Laurell C, Sandström C (2020) Tracking the Digital Evolution of Entrepreneurial Finance: The Interplay Between Crowdfunding, Blockchain Technologies, Cryptocurrencies, and Initial Coin Offerings. IEEE Tran Eng Manage, 1-10.
    [24] Börse D (2018) Deutsche Börse Group and HQLAX partner to build securities lending solution on the R3 Corda blockchain platform. Available from: http://www.deutsche-boerse-cash-market.com/dbcm-en/newsroom/press-releases/Deutsche-Boerse-Group-and-HQLAX-partner-to-build-securities-lending-solution-on-the-R3-Corda-blockchain-platform/3357600.
    [25] runnermeier MK, Pedersen LH (2008) Market liquidity and funding liquidity. Rev Financ Stud 22: 2201-2238. doi: 10.1093/rfs/hhn098
    [26] Buterin V (2013) Ethereum: A next-generation smart contract and decentralized application platform. Available from: https://www.weusecoins.com/assets/pdf/library/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf.
    [27] Carpenter MA, Pollock TG, Leary MM (2003) Testing a model of reasoned risk‐taking: governance, the experience of principals and agents, and global strategy in high‐technology IPO firms. Strategic Manage J 24: 803-820. doi: 10.1002/smj.338
    [28] Carpenter RE, Petersen BC (2002) Is the growth of small firms constrained by internal finance? Rev Econ Stat 84: 298-309.
    [29] Carter R, Manaster S (1990) Initial public offerings and underwriter reputation. J Financ 45: 1045-1067. doi: 10.1111/j.1540-6261.1990.tb02426.x
    [30] Carter SM (2006) The interaction of top management group, stakeholder, and situational factors on certain corporate reputation management activities. J Manage Stud 43: 1146-1176.
    [31] Certo ST (2003) Influencing initial public offering investors with prestige: Signaling with board structures. Acad Manage Rev 28: 432-446. doi: 10.5465/amr.2003.10196754
    [32] Chen H, Gompers P, Kovner A, et al. (2009) Buy local? The geography of successful and unsuccessful venture capital expansion. NBER working paper No. w15102.
    [33] Chen XP, Yao X, Kotha S (2009). Entrepreneur passion and preparedness in business plan presentations: a persuasion analysis of venture capitalists' funding decisions. Acad Manage J 52: 199-214. doi: 10.5465/amj.2009.36462018
    [34] Cholakova M, Clarysse B (2015) Does the possibility to make equity investments in crowdfunding projects crowd out reward‐based investments? Entrep Theory Pract 39: 145-172.
    [35] Coinschedule (2018) Cryptocurrency ICO Stats 2018. Available from: https://www.coinschedule.com/stats.html.
    [36] Colombo MG, Meoli M, Vismara S (2019) Signaling in science-based IPOs: The combined effect of affiliation with prestigious universities, underwriters, and venture capitalists. J Bus Ventur 34: 141-177. doi: 10.1016/j.jbusvent.2018.04.009
    [37] Connelly BL, Certo ST, Ireland RD, et al. (2011) Signaling theory: A review and assessment. J Manage 37: 39-67.
    [38] Cook RD (1977) Detection of influential observation in linear regression. Technometrics 19: 15-18.
    [39] Corbet S, Lucey B, Yarovaya L (2018) Datestamping the Bitcoin and Ethereum bubbles. Financ Res Lett 26: 81-88. doi: 10.1016/j.frl.2017.12.006
    [40] Cosh A, Cumming D, Hughes A (2009) Outside entrepreneurial capital. Econ J 119: 1494-1533. doi: 10.1111/j.1468-0297.2009.02270.x
    [41] Cresci S, Di Pietro R, Petrocchi M, et al. (2015) Fame for sale: efficient detection of fake Twitter followers. Decis Support Syst 80: 56-71. doi: 10.1016/j.dss.2015.09.003
    [42] Cumming DJ, Hornuf L, Karami M, et al. (2017) Disentangling crowdfunding from fraudfunding. Max Planck Institute for Innovation & Competition Research Paper No. 16-09.
    [43] Davila A, Foster G, Gupta M (2003) Venture capital financing and the growth of startup firms. J Bus Ventur 18: 689-708. doi: 10.1016/S0883-9026(02)00127-1
    [44] Davis BC, Hmieleski KM, Webb JW, et al. (2017) Funders' positive affective reactions to entrepreneurs' crowdfunding pitches: The influence of perceived product creativity and entrepreneurial passion. J Bus Ventur 32: 90-106. doi: 10.1016/j.jbusvent.2016.10.006
    [45] Deakins D, Freel M (1998) Entrepreneurial learning and the growth process in SMEs. Learn Organ 5: 144-155. doi: 10.1108/09696479810223428
    [46] Duan W, Gu B, Whinston AB (2009) Informational Cascades And Software Adoption On The Internet: An Empirical Investigation. MIS Q 33: 23-48. doi: 10.2307/20650277
    [47] Elitzur R, Gavious A (2003) Contracting, signaling, and moral hazard: a model of entrepreneurs, 'angels', and venture capitalists. J Bus Ventur 18: 709-725. doi: 10.1016/S0883-9026(03)00027-2
    [48] Fiedler I, Ante L, Steinmetz F, et al. (2018) Distributed Ledger Technology: A Possible Way Forward for Securities Clearing. Binary District. Available from: https://journal.binarydistrict.com/distributed-ledger-technology-a-possible-way-forward-for-securities-clearing.
    [49] Finma (2018) Swiss Financial Market Supervisory Authority. FINMA publishes ICO guidelines. Available from: https://www.finma.ch/en/news/2018/02/20180216-mm-ico-wegleitung.
    [50] Fisch C (2019) Initial coin offerings (ICOs) to finance new ventures. J Bus Ventur 34: 1-22. doi: 10.1016/j.jbusvent.2018.09.007
    [51] Fisch C, Momtaz PP (2020) Institutional investors and post-ICO performance: an empirical analysis of investor returns in initial coin offerings (ICOs). J Corp Financ 64: 101679.
    [52] Fischer E, Reuber R (2007) The good, the bad, and the unfamiliar: The challenges of reputation formation facing new firms. Entre Theory Pract 31: 53-75. doi: 10.1111/j.1540-6520.2007.00163.x
    [53] Fondevila-Gascón JF, Rom-Rodríguez J, Mata-Monforte J, et al. (2015) Crowdfunding as a Formula for the Financing of Projects: An Empirical Analysis. Rev Cient Hermes 14: 24-47. doi: 10.21710/rch.v14i0.230
    [54] Gimmon E, Levie J (2010) Founder's human capital, external investment, and the survival of new high-technology ventures. Res Policy 39: 1214-1226. doi: 10.1016/j.respol.2010.05.017
    [55] Griffin ZJ (2012) Crowdfunding: fleecing the American masses. Case W Res JL Tech Int 4: 375.
    [56] Gryglewicz S, Mayer S, Morellec E (2019) Optimal Financing with Tokens. Swiss Finance Institute Research Paper, 19-78.
    [57] Gulati R, Higgins MC (2003) Which ties matter when? The contingent effects of interorganizational partnerships on IPO success. Strategic Manage J 24: 127-144. doi: 10.1002/smj.287
    [58] Hannan MT, Freeman J (1989) Organizational Ecology, Harvard university press.
    [59] Hellmann T, Puri M (2002) Venture capital and the professionalization of start‐up firms: Empirical evidence. J Financ 57: 169-197. doi: 10.1111/1540-6261.00419
    [60] Hobbs J, Grigore G, Molesworth M (2016) Success in the Management of Crowdfunding Projects in the Creative Industries. Int Res 26: 146-166.
    [61] Hong Y, Hu Y, Burtch G (2015) How does social media affect contribution to public versus private goods in crowdfunding campaigns? Thirty Sixth International Conference on Information Systems, Fort Worth.
    [62] Hornuf L, Schwienbacher A (2017) Market mechanisms and funding dynamics in equity crowdfunding. J Corp Financ 50: 556-574. doi: 10.1016/j.jcorpfin.2017.08.009
    [63] Howell ST, Niessner M, Yermack D (2018) Initial coin offerings: Financing growth with cryptocurrency token sales. NBER working paper No. w24774.
    [64] Hsu DH (2007) Experienced entrepreneurial founders, organizational capital, and venture capital funding. Res Policy 36: 722-741. doi: 10.1016/j.respol.2007.02.022
    [65] Jin F, Wu A, Hitt L (2017) Social Is the New Financial: How Startup Social Media Activity Influences Funding Outcomes, In: Academy of Management Proceedings, Briarcliff Manor, NY: Academy of Management, 13329.
    [66] Johnstone RA, Grafen A (1993) Dishonesty and the handicap principle. Anim Behav 46: 759-764. doi: 10.1006/anbe.1993.1253
    [67] Kim JH, Wagman L (2016) Early-stage entrepreneurial financing: A signaling perspective. J Bank Financ 67: 12-22. doi: 10.1016/j.jbankfin.2016.03.004
    [68] Koshy P, Koshy D, McDaniel P (2014) An analysis of anonymity in bitcoin using p2p network traffic, In: International Conference on Financial Cryptography and Data Security, Springer, Berlin, Heidelberg, 469-485.
    [69] Kromidha E, Robson P (2016) Social identity and signalling success factors in online crowdfunding. Entrep Reg Dev 28: 605-629. doi: 10.1080/08985626.2016.1198425
    [70] ousseeuw PJ, Leroy AM (1987) Robust regression and outlier detection, New York: Wiley.
    [71] Luca M, Zervas G (2016) Fake it till you make it: Reputation, competition, and Yelp review fraud. Manage Sci 62: 3412-3427. doi: 10.1287/mnsc.2015.2304
    [72] Gafni H, Marom D, Sade O (2018) Are the life and death of an early stage venture indeed in the power of the tongue? Lessons from online crowdfunding pitches. Strategic Entrep J 13: 3-23. doi: 10.1002/sej.1293
    [73] Macht SA, Robinson J (2009) Do business angels benefit their investee companies? Int J Entrep Behav Res15: 187-208.
    [74] Mavlanova T, Benbunan-Fich R, Koufaris M (2012) Signaling theory and information asymmetry in online commerce. Inf Manage 49: 240-247. doi: 10.1016/j.im.2012.05.004
    [75] Mazzorana-Kremer F (2019) Blockchain-Based Equity and STOs: Towards a Liquid Market for SME Financing? Theore Econ Lett 9: 1534-1552.
    [76] Megginson WL, Weiss KA (1991) Venture capitalist certification in initial public offerings. J Financ 46: 879-903. doi: 10.1111/j.1540-6261.1991.tb03770.x
    [77] Merkle RC (1989) A certified digital signature, In: Conference on the Theory and Application of Cryptology, Springer, New York, NY, 218-238.
    [78] Merton RC (1981) On market timing and investment performance. I. An equilibrium theory of value for market forecasts. J Bus 54: 363-406.
    [79] Meyer A, Ante L (2020) Effects of Initial Coin Offering Characteristics on Cross-listing Returns. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557733.
    [80] Mills DC, Wang K, Malone B, et al. (2016) Distributed ledger technology in payments, clearing, and settlement. Finance and Economics Discussion Series 2016-095.
    [81] Moisseyev A (2013) Effect of social media on crowdfunding project results. Dissertations, University of Nebraska, Lincoln, USA.
    [82] Mollick E (2012) The dynamics of crowdfunding: Determinants of success and failure. Available at SSRN, 2088298.
    [83] Mollick ER (2013) Swept away by the crowd? Crowdfunding, venture capital, and the selection of entrepreneurs. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2239204.
    [84] Mollick E (2014) The dynamics of crowdfunding: An exploratory study. J Bus Ventur 29: 1-16. doi: 10.1016/j.jbusvent.2013.06.005
    [85] Mollick E, Nanda R (2016) Wisdom or Madness? Comparing Crowds with Expert Evaluation in Funding the Arts. Manage Scienc 62: 1533-1553. doi: 10.1287/mnsc.2015.2207
    [86] Momtaz PP (2020) Entrepreneurial finance and moral hazard: evidence from token offerings. J Bus Ventur [In Press].
    [87] Mukaka MM (2012) A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 24: 69-71.
    [88] Myers SC (1984) The capital structure puzzle. J Financ 39: 574-592. doi: 10.1111/j.1540-6261.1984.tb03646.x
    [89] Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system. Available from: https://bitcoin.org/bitcoin.pdf.
    [90] Nevin S, Gleasure R, O'Reilly P, et al. (2017) Social Identity and Social Media Activities in Equity Crowdfunding, In: Proceedings of the 13th International Symposium on Open Collaboration, ACM, 11.
    [91] Parhankangas A, Renko M (2017) Linguistic style and crowdfunding success among social and commercial entrepreneurs. J Bus Ventur 32: 215-236. doi: 10.1016/j.jbusvent.2016.11.001
    [92] Pazos J (2019) Valuation method of equity-based security token offerings (sto) for start-up companies. J Br Blockchain Assoc 2: 7180.
    [93] Petersen MA, Rajan RG (1995) The effect of credit market competition on lending relationships. Q J Econ 110: 407-443. doi: 10.2307/2118445
    [94] Pfeffer J, Zorbach T, Carley KM (2014) Understanding online firestorms: Negative word-of-mouth dynamics in social media networks. J Mark Commun 20: 117-128. doi: 10.1080/13527266.2013.797778
    [95] Pinna A, Ruttenberg W (2016) Distributed ledger technologies in securities post-trading. Revolution or evolution. European Central Bank Occasional Paper No. 172. Available from: https://www.ecb.europa.eu/pub/pdf/scpops/ecbop172.en.pdf.
    [96] Pegulation (EU) 2017/1129 (2017) Regulation (Eu) 2017/1129 of the European Parliament and of the Council of 14 June 2017 on the prospectus to be published when securities are offered to the public or admitted to trading on a regulated market, and repealing Directive 2003/71/EC. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1129.
    [97] Ross SA (1973) The economic theory of agency: The principal's problem. Am Econ Rev 63: 134-139.
    [98] Roth J, Schä r F, Schöpfer A (2019) The Tokenization of assets: using blockchains for equity crowdfunding. Available at SSRN 3443382.
    [99] Sanders WG, Boivie S (2004) Sorting things out: Valuation of new firms in uncertain markets. Strategic Manage J 25: 167-186. doi: 10.1002/smj.370
    [100] Shifflet S, Jones C (2018) Buyer Beware: Hundreds of Bitcoin Wannabes Show Hallmarks of Fraud. Available from: https://www.wsj.com/articles/buyer-beware-hundreds-of-bitcoin-wannabes-show-hallmarks-of-fraud-1526573115.
    [101] Schwienbacher A, Larralde B (2010) Crowdfunding of small entrepreneurial ventures. Handbook of entrepreneurial finance, Oxford University Press, [In Press].
    [102] Scovotti C, Jones SK (2011) From Web 2.0 to Web 3.0: Implications for advertising courses. J Advertising Educ 15: 6-15.
    [103] SEC (2017a) U.S. Securities and Exchange Commission. Investor Bulletin: Initial Coin Offerings. Available from: https://www.sec.gov/oiea/investor-alerts-and-bulletins/ib_coinofferings.
    [104] SEC (2017b) U.S. Securities and Exchange Commission. Securities and exchange commission, securities exchange act of 1934, Release No. 81207/July 25, 2017, Report of Investigation Pursuant to Section 21(a) of the Securities Exchange Act of 1934: The DAO. Available from: www.sec.gov/litigation/investreport/34-81207.pdf.
    [105] SEC (1946) SEC v. WJ Howey Co., Supreme Court of United States. Available from: https://supreme.justia.com/cases/federal/us/328/293/.
    [106] Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52: 591-611. doi: 10.1093/biomet/52.3-4.591
    [107] Sliwka D (2007) Trust as a signal of a social norm and the hidden costs of incentive schemes. Am Econ Rev 97: 999-1012. doi: 10.1257/aer.97.3.999
    [108] Smith JM (1994) Must reliable signals always be costly? Anim Behav 47: 1115-1120.
    [109] Spence M (1973) Job market signaling. Q J Econ 87: 355-374. doi: 10.2307/1882010
    [110] Steinmetz F, Ante L, Fiedler I (2020) Blockchain and the Digital Economy, Agenda Publishing.
    [111] Stelzner MA (2010) 2013 Social media marketing industry report: How marketers are using social media to grow their businesses. Available from: https: //www.SocialMediaExaminer.com.
    [112] Stiglitz JE (2000) Capital market liberalization, economic growth, and instability. World Dev 28: 1075-1086. doi: 10.1016/S0305-750X(00)00006-1
    [113] Stiglitz JE (2002) Information and the Change in the Paradigm in Economics. Am Econ Rev 92: 460-501. doi: 10.1257/00028280260136363
    [114] Stuart TE, Hoang H, Hybels RC (1999) Interorganizational endorsements and the performance of entrepreneurial ventures. Administrative Sci Q 44: 315-349. doi: 10.2307/2666998
    [115] Stuart TE, Sorenson O (2003) Liquidity events and the geographic distribution of entrepreneurial activity. Administrative Sci Q 48: 175-201. doi: 10.2307/3556656
    [116] Stuart TE, Sorenson O (2007) Strategic networks and entrepreneurial ventures. Strategic Entrep J 1: 211-227. doi: 10.1002/sej.18
    [117] Thaler RH, Johnson EJ (1990) Gambling with the house money and trying to break even: The effects of prior outcomes on risky choice. Manage Sci 36: 643-660. doi: 10.1287/mnsc.36.6.643
    [118] Tucker C, Zhang J (2011) How Does Popularity Information Affect Choices? A Field Experiment. Manage Sci 57: 828-842. doi: 10.1287/mnsc.1110.1312
    [119] Twitter (2018) Tweet by @cz_binance. Available from: https://twitter.com/cz_binance/status/1069563071436181505.
    [120] Wang Q, Koval JJ, Mills CA, et al. (2007) Determination of the selection statistics and best significance level in backward stepwise logistic regression. Commun Stat-Simul Comput 37: 62-72. doi: 10.1080/03610910701723625
    [121] Wessel M, Thies F, Benlian A (2015) A Lie Never Lives to be Old: The Effects of Fake Social Information on Consumer Decision-Making in Crowdfunding. ECIS 2015 Completed Research Papers. Paper 201.
    [122] Wessel M, Thies F, Benlian A (2016) The emergence and effects of fake social information: Evidence from crowdfunding. Decis Support Syst 90: 75-85. doi: 10.1016/j.dss.2016.06.021
    [123] Westphal JD, Zajac EJ (2001) Decoupling policy from practice: The case of stock repurchase programs. Administrative Sci Q 46: 202-228. doi: 10.2307/2667086
    [124] Wood G (2014) Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Pap 151: 1-32.
    [125] Yang S, Berger R (2017) Relation between start-ups' online social media presence and fundraising. J Sci Technol Policy Manage 8: 161-180. doi: 10.1108/JSTPM-09-2016-0022
    [126] Zelizer VAR (2017) The social meaning of money, Princeton University Press.
    [127] Zhao W (2018a) Coinbase Says It Now Has Regulatory Approval to List Security Tokens. Available from: https://www.coindesk.com/coinbase-claims-it-now-has-regulatory-approval-to-list-security-tokens.
    [128] Zhao W (2018b) Singapore Central Banker: No Securities Crypto Token Approved to Date. Available from: https://www.coindesk.com/singapore-central-bank-no-tokens-weve-seen-are-securities.
    [129] Zheng N, Kaizoji N (2019) Bitcoin-based triangular arbitrage with the Euro/U.S. dollar as a foreign futures hedge: modeling with a bivariate GARCH model. Quant Financ Econ 3: 347-365.
  • This article has been cited by:

    1. Yanlin Li, Mohan Khatri, Jay Prakash Singh, Sudhakar K. Chaubey, Improved Chen’s Inequalities for Submanifolds of Generalized Sasakian-Space-Forms, 2022, 11, 2075-1680, 324, 10.3390/axioms11070324
    2. Yanlin Li, Ali Uçum, Kazım İlarslan, Çetin Camcı, A New Class of Bertrand Curves in Euclidean 4-Space, 2022, 14, 2073-8994, 1191, 10.3390/sym14061191
    3. Nadia Alluhaibi, Rashad A. Abdel-Baky, Kinematic Geometry of Timelike Ruled Surfaces in Minkowski 3-Space E13, 2022, 14, 2073-8994, 749, 10.3390/sym14040749
    4. Yanlin Li, Santu Dey, Sampa Pahan, Akram Ali, Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on paracontact geometry, 2022, 20, 2391-5455, 574, 10.1515/math-2022-0048
    5. Yongqiao Wang, Lin Yang, Pengcheng Li, Yuan Chang, Singularities of Osculating Developable Surfaces of Timelike Surfaces along Curves, 2022, 14, 2073-8994, 2251, 10.3390/sym14112251
    6. Rashad A. Abdel-Baky, Fatemah Mofarreh, A Study on the Bertrand Offsets of Timelike Ruled Surfaces in Minkowski 3-Space, 2022, 14, 2073-8994, 783, 10.3390/sym14040783
    7. Sachin Kumar Srivastava, Fatemah Mofarreh, Anuj Kumar, Akram Ali, Characterizations of PR-Pseudo-Slant Warped Product Submanifold of Para-Kenmotsu Manifold with Slant Base, 2022, 14, 2073-8994, 1001, 10.3390/sym14051001
    8. Yanlin Li, Pişcoran Laurian-Ioan, Akram Ali, Ali H. Alkhaldi, Null Homology Groups and Stable Currents in Warped Product Submanifolds of Euclidean Spaces, 2021, 13, 2073-8994, 1587, 10.3390/sym13091587
    9. Sushil Kumar, Mohd Bilal, Rajendra Prasad, Abdul Haseeb, Zhizhi Chen, V-Quasi-Bi-Slant Riemannian Maps, 2022, 14, 2073-8994, 1360, 10.3390/sym14071360
    10. Xiaoming Fan, Yanlin Li, Prince Majeed, Mehraj Ahmad Lone, Sandeep Sharma, Geometric Classification of Warped Products Isometrically Immersed into Conformal Sasakian Space Froms, 2022, 14, 2073-8994, 608, 10.3390/sym14030608
    11. Yanlin Li, Rajendra Prasad, Abdul Haseeb, Sushil Kumar, Sumeet Kumar, A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic Manifolds, 2022, 11, 2075-1680, 503, 10.3390/axioms11100503
    12. Nadia Alluhaibi, Rashad A. Abdel-Baky, Monia Naghi, On the Bertrand Offsets of Timelike Ruled Surfaces in Minkowski 3-Space, 2022, 14, 2073-8994, 673, 10.3390/sym14040673
    13. Yanlin Li, Akram Ali, Fatemah Mofarreh, Abimbola Abolarinwa, Rifaqat Ali, Umair Ali, Some Eigenvalues Estimate for the ϕ -Laplace Operator on Slant Submanifolds of Sasakian Space Forms, 2021, 2021, 2314-8888, 1, 10.1155/2021/6195939
    14. Rashad Abdel-Satar Abdel-Baky, Mohamed Khalifa Saad, Singularities of Non-Developable Ruled Surface with Space-like Ruling, 2022, 14, 2073-8994, 716, 10.3390/sym14040716
    15. Pengfei Zhang, Yanlin Li, Soumendu Roy, Santu Dey, Geometry of α-Cosymplectic Metric as ∗-Conformal η-Ricci–Yamabe Solitons Admitting Quarter-Symmetric Metric Connection, 2021, 13, 2073-8994, 2189, 10.3390/sym13112189
    16. Qiming Zhao, Lin Yang, Yongqiao Wang, Geometry of Developable Surfaces of Frenet Type Framed Base Curves from the Singularity Theory Viewpoint, 2022, 14, 2073-8994, 975, 10.3390/sym14050975
    17. Haibo Yu, Liang Chen, Singularities of Slant Focal Surfaces along Lightlike Locus on Mixed Type Surfaces, 2022, 14, 2073-8994, 1203, 10.3390/sym14061203
    18. Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya, Conformal \eta -Ricci solitons within the framework of indefinite Kenmotsu manifolds, 2022, 7, 2473-6988, 5408, 10.3934/math.2022300
    19. Haiming Liu, Jiajing Miao, Extended Legendrian Dualities Theorem in Singularity Theory, 2022, 14, 2073-8994, 982, 10.3390/sym14050982
    20. Pengfei Zhang, Yanlin Li, Soumendu Roy, Santu Dey, Arindam Bhattacharyya, Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci–Yamabe Soliton, 2022, 14, 2073-8994, 594, 10.3390/sym14030594
    21. Sümeyye Gür Mazlum, Süleyman Şenyurt, Luca Grilli, The Dual Expression of Parallel Equidistant Ruled Surfaces in Euclidean 3-Space, 2022, 14, 2073-8994, 1062, 10.3390/sym14051062
    22. Yanlin Li, Akram Ali, Fatemah Mofarreh, Nadia Alluhaibi, Bibhas Ranjan Majhi, Homology Groups in Warped Product Submanifolds in Hyperbolic Spaces, 2021, 2021, 2314-4785, 1, 10.1155/2021/8554738
    23. Yongqiao Wang, Lin Yang, Yuxin Liu, Yuan Chang, Singularities for Focal Sets of Timelike Sabban Curves in de Sitter 3-Space, 2022, 14, 2073-8994, 2471, 10.3390/sym14122471
    24. Yanlin Li, Abimbola Abolarinwa, Shahroud Azami, Akram Ali, Yamabe constant evolution and monotonicity along the conformal Ricci flow, 2022, 7, 2473-6988, 12077, 10.3934/math.2022671
    25. Nasser Bin Turki, A Note on Incompressible Vector Fields, 2023, 15, 2073-8994, 1479, 10.3390/sym15081479
    26. S. K. Yadav, D. L. Suthar, Kählerian Norden spacetime admitting conformal η-Ricci–Yamabe metric, 2024, 21, 0219-8878, 10.1142/S0219887824502347
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(12000) PDF downloads(631) Cited by(28)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog