Research article Topical Sections

Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5′-AMP-activated protein kinase activity

  • Received: 01 April 2021 Accepted: 05 August 2021 Published: 03 September 2021
  • Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5′-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of ‘glucose-excited’ metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase65/67 (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α2-AR and/or β1-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.

    Citation: Abdulrahman Alhamyani, Prabhat R Napit, Haider Ali, Mostafa MH Ibrahim, Karen P Briski. Ventrolateral ventromedial hypothalamic nucleus GABA neuron adaptation to recurring Hypoglycemia correlates with up-regulated 5′-AMP-activated protein kinase activity[J]. AIMS Neuroscience, 2021, 8(4): 510-525. doi: 10.3934/Neuroscience.2021027

    Related Papers:

  • Gamma-aminobutyric acid (GABA) acts on ventromedial hypothalamic targets to suppress counter-regulatory hormone release, thereby lowering blood glucose. Maladaptive up-regulation of GABA signaling is implicated in impaired counter-regulatory outflow during recurring insulin-induced hypoglycemia (RIIH). Ventromedial hypothalamic nucleus (VMN) GABAergic neurons express the sensitive energy gauge 5′-AMP-activated protein kinase (AMPK). Current research used high-neuroanatomical resolution single-cell microdissection tools to address the premise that GABAergic cells in the VMNvl, the primary location of ‘glucose-excited’ metabolic-sensory neurons in the VMN, exhibit attenuated sensor activation during RIIH. Data show that during acute hypoglycemia, VMNvl glutamate decarboxylase65/67 (GAD)-immunoreactive neurons maintain energy stability, yet a regional subset of this population exhibited decreased GAD content. GABA neurons located along the rostrocaudal length of the VMNvl acclimated to RIIH through a shift to negative energy imbalance, e.g. increased phosphoAMPK expression, alongside amplification/gain of inhibition of GAD profiles. Acquisition of negative GAD sensitivity may involve altered cellular receptivity to noradrenergic input via α2-AR and/or β1-AR. Suppression of VMNvl GABA nerve cell signaling during RIIH may differentiate this neuroanatomical population from other, possibly non-metabolic-sensory GABA neurons in the MBH. Data here also provide novel evidence that VMNvl GABA neurons are direct targets of glucocorticoid control, and show that glucocorticoid receptors may inhibit RIIH-associated GAD expression in rostral VMNvl GABAergic cells through AMPK-independent mechanisms.


    Abbreviations

    AMPK

    5′-AMP-activated protein kinase

    AR

    adrenergic receptor

    α1-AR

    alpha1-adrenergic receptor

    α2-AR

    alpha2-adrenergic receptor

    β1-AR

    beta1-adrenergic receptor

    GABA

    γ-aminobutyric acid

    GAD

    glutamate decarboxylase65/67

    GR

    glucocorticoid receptor

    INS

    insulin

    IIH

    insulin-induced hypoglycemia

    MBH

    mediobasal hypothalamus

    pAMPK

    phosphoAMPK

    RIIH

    recurrent insulin-induced hypoglycemia

    VMN

    ventromedial hypothalamic nucleus

    VMNvl

    ventrolateral ventromedial hypothalamic nucleus

    加载中

    Acknowledgments



    NIH DK-109382.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Cryer PE (2015) Hypoglycemia-associated autonomic failure in diabetes: maladaptive, adaptive, or both? Diabetes 64: 2322-2323. doi: 10.2337/db15-0331
    [2] Cryer PE (2017) Individualized glycemic goals and an expanded classification of severe hypoglycemia in diabetes. Diabetes Care 40: 1641-1643. doi: 10.2337/dc16-1741
    [3] Han SM, Namkoong C, Jang PG, et al. (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48: 2170-2178. doi: 10.1007/s00125-005-1913-1
    [4] McCrimmon RJ, Shaw M, Fan X, et al. (2008) Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57: 444-450. doi: 10.2337/db07-0837
    [5] Briski KP, Mandal SK, Bheemanapally K, et al. (2020) Effects of acute versus recurrent insulin-induced hypoglycemia on ventromedial hypothalamic nucleus metabolic-sensory neuron AMPK activity: Impact of alpha1-adrenergic receptor signaling. Brain Res Bull 157: 41-50. doi: 10.1016/j.brainresbull.2020.01.013
    [6] Ibrahim MMH, Bheemanapally K, Alhamami HN, et al. (2020) Effects of intracerebroventricular glycogen phosphorylase inhibitor CP-316,819 infusion on hypothalamic glycogen content and metabolic neuron AMPK activity and neurotransmitter expression in the male rat. J Mol Neurosci 70: 647-658. doi: 10.1007/s12031-019-01471-0
    [7] Chan O, Cheng H, Herzog R, et al. (2008) Increased GABAergic tone in the ventromedial hypothalamus contributes to suppression of counterregulatory responses after antecedent hypoglycemia. Diabetes 57: 1363-1370. doi: 10.2337/db07-1559
    [8] Chan O, Paranjape SA, Horblitt A, et al. (2013) Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes 62: 4239-4246. doi: 10.2337/db13-0770
    [9] Mandal SK, Shrestha PK, Alenazi FSH, et al. (2017) Role of hindbrain adenosine 5′-monophosphate-activated protein kinase (AMPK) in hypothalamic AMPK and metabolic neuropeptide adaptation to recurring insulin-induced hypoglycemia in the male rat. Neuropeptides 66: 25-35. doi: 10.1016/j.npep.2017.08.001
    [10] Cotero VE, Routh VH (2009) Insulin blunts the response of glucose-excited neurons in the ventrolateral-ventromedial hypothalamic nucleus to decreased glucose. Am J Physio Endocrinol Metab 296: E1101-E1109. doi: 10.1152/ajpendo.90932.2008
    [11] Alshamrani AA, Bheemanapally K, Ibrahim MMH, et al. (2021) Sex-dimorphic rostro-caudal patterns of 5′AMP-activated protein kinase activation and glucoregulatory transmitter marker protein expression in the ventrolateral ventromedial hypothalamic nucleus (VMNvl) in hypoglycemic male and female rats: impact of estradiol. J Mol Neurosci 71: 1082-1094. doi: 10.1007/s12031-020-01730-5
    [12] Briski KP, Ibrahim MMH, Mahmood ASMH, et al. (2021) Norepinephrine regulation of ventromedial hypothalamic nucleus astrocyte glycogen metabolism. Intl J Mol Sci 22: E759. doi: 10.3390/ijms22020759
    [13] Ibrahim MMH, Alhamami HN, Briski KP (2019) Norepinephrine regulation of ventromedial hypothalamic nucleus metabolic transmitter biomarker and astrocyte enzyme and receptor expression: impact of 5′-AMP-activated protein kinase. Brain Res 1711: 48-57. doi: 10.1016/j.brainres.2019.01.012
    [14] Mahmood ASMH, Bheemanapally K, Mandal SK, et al. (2019) Norepinephrine control of ventromedial hypothalamic nucleus glucoregulatory neurotransmitter expression in the female rat: role monocarboxylate transporter function. Mol Cell Neurosci 95: 51-58. doi: 10.1016/j.mcn.2019.01.004
    [15] Uddin MM, Mahmood ASMH, Ibrahim MMH, Briski KP (2019) Sex dimorphic estrogen receptor regulation of ventromedial hypothalamic nucleus glucoregulatory neuron adrenergic receptor expression in hypoglycemic male and female rats. Brain Res 720: 146311. doi: 10.1016/j.brainres.2019.146311
    [16] Sejling AS, Wang P, Zhu W, et al. (2021) Repeated Activation of Noradrenergic Receptors in the Ventromedial Hypothalamus Suppresses the Response to Hypoglycemia. Endocrinology 162: bqaa241. doi: 10.1210/endocr/bqaa241
    [17] Kuo T, McQueen A, Chen TC, et al. (2015) Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol 872: 99-126. doi: 10.1007/978-1-4939-2895-8_5
    [18] Reul JM, van den Bosch FR, de Kloet ER (1987) Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocrinol 115: 459-467. doi: 10.1677/joe.0.1150459
    [19] De Kloet ER, Oitzl MS, Joels M (1993) Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol 13: 433-455. doi: 10.1007/BF00711582
    [20] De Kloet ER, Vreugdenhil E, Oitzl MS, et al. (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269-301.
    [21] Kale AY, Paranjape SA, Briski KP (2006) I.c.v. administration of the nonsteroidal glucocorticoid receptor antagonist CP4-72555, prevents exacerbated hypoglycemia during repeated insulin administration. Neuroscience 555–565, 140.
    [22] Paranjape SA, Briski KP (2005) Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience 130: 957-970. doi: 10.1016/j.neuroscience.2004.09.030
    [23] Cadepond F, Ulmann A, Baulieu EE (1997) RU486 (mifepristone): Mechanisms of action and clinical uses. Annu Rev Med 48: 129-156. doi: 10.1146/annurev.med.48.1.129
    [24] Clark RD (2008) Glucocorticoid receptor antagonists. Curr Top Med Chem 8: 813-838. doi: 10.2174/156802608784535011
    [25] Moritz CP (2017) Tubulin or not tubulin: Heading toward total protein staining as loading control in Western blots. Proteomics 17. doi: 10.1002/pmic.201600189
    [26] Gilda JE, Gomes AV (2015) Western blotting using in-gel protein labeling as a normalization control: stain-free technology. Methods Mol Biol 1295: 381-391. doi: 10.1007/978-1-4939-2550-6_27
    [27] Kale AY, Paranjape SA, Briski KP, et al. (2009) Site-specific habituation of insulin-induced hypoglycemic induction of Fos immunoreactivity in glucocorticoid receptor (GR)-immuno-positive neurons in the male rat brain. Exp Brain Res 176: 260-266. doi: 10.1007/s00221-006-0614-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2788) PDF downloads(93) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog