Research article Special Issues

Distributed adaptive control for nonlinear multi-agent systems with nonlinear parametric uncertainties

  • Received: 11 April 2023 Revised: 17 May 2023 Accepted: 25 May 2023 Published: 05 June 2023
  • This paper considers the distributed tracking control problem for a class of nonlinear multi-agent systems with nonlinearly parameterized control coefficients and inherent nonlinearities. The essential of multi-agent systems makes it difficult to directly generalize the existing works for single nonlinearly parameterized systems with uncontrollable unstable linearization to the case in this paper. To dominate the inherent nonlinearities and nonlinear parametric uncertainties, a powerful distributed adaptive tracking control is presented by combing the algebra graph theory with the distributed backstepping method, which guarantees that all the closed-loop system signals are global bounded while the range of the tracking error between the follower's output and the leader's output can be tuned arbitrarily small. Finally, a numerical example is provided to verify the validity of the developed methods.

    Citation: Meiqiao Wang, Wuquan Li. Distributed adaptive control for nonlinear multi-agent systems with nonlinear parametric uncertainties[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 12908-12922. doi: 10.3934/mbe.2023576

    Related Papers:

  • This paper considers the distributed tracking control problem for a class of nonlinear multi-agent systems with nonlinearly parameterized control coefficients and inherent nonlinearities. The essential of multi-agent systems makes it difficult to directly generalize the existing works for single nonlinearly parameterized systems with uncontrollable unstable linearization to the case in this paper. To dominate the inherent nonlinearities and nonlinear parametric uncertainties, a powerful distributed adaptive tracking control is presented by combing the algebra graph theory with the distributed backstepping method, which guarantees that all the closed-loop system signals are global bounded while the range of the tracking error between the follower's output and the leader's output can be tuned arbitrarily small. Finally, a numerical example is provided to verify the validity of the developed methods.



    加载中


    [1] R. Brockett, New issues in the mathematics of control, in Mathematics Unlimited$-2001$ and Beyond, Springer, (2001), 189–219. https://doi.org/10.1007/978-3-642-56478-9_9
    [2] K. J. Astrom, Model Uncertainty and Robust Control, Springer, 2002.
    [3] A. M. Annaswamy, F. P. Skantze, A. P. Loh, Adaptive control of continuous time systems with convex/concave parametrization, Automatica, 34 (1998), 33–49. https://doi.org/10.1016/S0005-1098(97)00159-3 doi: 10.1016/S0005-1098(97)00159-3
    [4] J. D. Bosković, Adaptive control of a class of nonlinearly parameterized plants, IEEE Trans. Autom. Control, 43 (1998), 930–934. https://doi.org/10.1109/9.701090 doi: 10.1109/9.701090
    [5] M. Krstić, I. Kanellakopoulos, P. V. Kokotović, Nonlinear and Adaptive Control Design, John Wiley, 1995.
    [6] R. Marino, P. Tomei, Global adaptive output-feedback control of nonlinear systems. Part I: Linear parameterization, IEEE Trans. Autom. Control, 38 (1993), 17–32. https://doi.org/10.1109/9.186309 doi: 10.1109/9.186309
    [7] R. Marino, P. Tomei, Global adaptive output-feedback control of nonlinear systems. Part II: Nonlinear parameterization, IEEE Trans. Autom. Control, 38 (1993), 33–48. https://doi.org/10.1109/9.186310 doi: 10.1109/9.186310
    [8] W. Q. Li, X. X. Yao, M. Krstić, Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty, Automatica, 120 (2020), 109112. https://doi.org/10.1016/j.automatica.2020.109112 doi: 10.1016/j.automatica.2020.109112
    [9] E. Nuno, R. Ortega, L. Basanez, D. Hill, Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays, IEEE Trans. Autom. Control, 56 (2011), 935–941. https://doi.org/10.1109/TAC.2010.2103415 doi: 10.1109/TAC.2010.2103415
    [10] Z. Zuo, C. Y. Wang, Z. T. Ding, Robust consensus control of uncertain multi-agent systems with input delay: A model reduction method, Int. J. Robust Nonlinear, 27 (2017), 1874–1894. https://doi.org/10.1002/rnc.3642 doi: 10.1002/rnc.3642
    [11] Y. Kaizuka, K. Tsumura, Consensus via distributed adaptive control, IFAC Proc. Vol., 44 (2011), 1213–1218. https://doi.org/10.3182/20110828-6-IT-1002.03282 doi: 10.3182/20110828-6-IT-1002.03282
    [12] W. Wang, J. S. Huang, C. Y. Wen, H. J. Fan, Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots, Automatica, 50 (2014), 1254–1263. https://doi.org/10.1016/j.automatica.2014.02.028 doi: 10.1016/j.automatica.2014.02.028
    [13] W. L. Zhang, Z. Wang, Adaptive output consensus tracking of uncertain multi-agent systems, Int. J. Syst. Sci., 46 (2015), 2367–2379. https://doi.org/10.1080/00207721.2014.998321 doi: 10.1080/00207721.2014.998321
    [14] J. Z. Gu, W. Q. Li, H. Y. Yang, Distributed adaptive tracking control for high-order multi-agent systems with unknown dynamics, Int. J. Control, 90 (2017), 1925–1934. https://doi.org/10.1080/00207179.2016.1229037 doi: 10.1080/00207179.2016.1229037
    [15] W. Q. Li, J. F. Zhang, Distributed practical output tracking of high-order stochastic multi-agent systems with inherent nonlinear drift and diffusion terms, Automatica, 50 (2014), 3231–3238. https://doi.org/10.1016/j.automatica.2014.10.041 doi: 10.1016/j.automatica.2014.10.041
    [16] W. Q. Li, Distributed output tracking of high-order nonlinear multi-agent systems with unstable linearization, Syst. Control Lett., 83 (2015), 67–73. https://doi.org/10.1016/j.sysconle.2015.06.009 doi: 10.1016/j.sysconle.2015.06.009
    [17] X. D. Li, D. W. C. Ho, J. D. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
    [18] M. L. Lv, W. W. Yu, J. D. Cao, S. Baldi, A separation-based methodology to consensus tracking of switched high-order nonlinear multiagent systems, IIEEE Trans. Neural Networks Learn. Syst., 2021 (2021). https://doi.org/10.1109/TNNLS.2021.3070824
    [19] W. Q. Li and M. Krstić, Mean-nonovershooting control of stochastic nonlinear systems, IEEE Trans. Autom. Control, 66 (2021), 5756–5771. https://doi.org/10.1109/TAC.2020.3042454 doi: 10.1109/TAC.2020.3042454
    [20] Y. T. Cao, L. H. Zhao, Q. S. Zhong, S. P. Wen, K. B. Shi, J. Y. Xiao, et al., Adaptive fixed-time output synchronization for complex dynamical networks with multi-weights, Neural Networks, 163 (2023), 28–39. https://doi.org/10.1007/s15012-023-7764-y doi: 10.1007/s15012-023-7764-y
    [21] B. Li, S. Wen, Z. Yan, G. Wen, T. Huang, A Survey on the control Lyapunov function and control barrier function for nonlinear-affine control systems, IEEE/CAA J. Autom. Sci., 10 (2023), 584–602. https://doi.org/10.1109/JAS.2023.123075 doi: 10.1109/JAS.2023.123075
    [22] W. Q. Li, M. Krstić, Stochastic adaptive nonlinear control with filterless least-squares, IEEE Trans. Autom. Control, 66 (2021), 3893–3905. https://doi.org/10.1109/TAC.2020.3027650 doi: 10.1109/TAC.2020.3027650
    [23] W. Lin, C. J. Qian, Adaptive control of nonlinearly parameterized systems: A nonsmooth feedback framework, IEEE Trans. Autom. Control, 47 (2002), 757–774. https://doi.org/10.1109/TAC.2002.1000270 doi: 10.1109/TAC.2002.1000270
    [24] X. D. Li, S. J. Song, J. H. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. https://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [25] B. Yang, W. Lin, Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback, IEEE Trans. Autom. Control, 49 (2004), 1069–1080. https://doi.org/10.1109/TAC.2004.831186 doi: 10.1109/TAC.2004.831186
    [26] J. Hu, Y. Hong, Leader-following coordination of multi-agent systems with coupling time delays, Phys. A: Stat. Mech. Appl., 374 (2007), 853–863. https://doi.org/10.1016/j.physa.2006.08.015 doi: 10.1016/j.physa.2006.08.015
    [27] H, Y. Chu, C. J. Qian, R. J. Liu, L. M. Di, Global practical tracking of a class of nonlinear systems using linear sampled-data control, Int. J. Control, 88 (2015), 257–268. https://doi.org/10.1080/00207179.2015.1022796 doi: 10.1080/00207179.2015.1022796
    [28] M. L. Lv, W. W. Yu, J. D. Cao, S. Baldi, Consensus in high-power multiagent systems with mixed unknown control directions via hybrid nussbaum-based control, IEEE Trans. Cybern., 2020 (2020). https://doi.org/10.1109/TCYB.2020.3028171
    [29] W. Q. Li, L. Liu, G. Feng, Cooperative control of multiple nonlinear benchmark systems perturbed by second-order moment processes, IEEE Trans. Cybern., 50 (2020), 902–910. https://doi.org/10.1109/TCYB.2018.2869385 doi: 10.1109/TCYB.2018.2869385
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1152) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog