Citation: Wen Yin, Cordula M. Stover. The potential of circulating autoantibodies in the early diagnosis of Alzheimer’s disease[J]. AIMS Allergy and Immunology, 2017, 1(2): 62-70. doi: 10.3934/Allergy.2017.2.62
[1] | Bateman RJ, Aisen PS, Strooper BD, et al. (2011) Autosomal-dominant Alzheimer's disease: A review and proposal for the prevention of Alzheimer's disease. Alzheimers Res Ther 3: 13–25. doi: 10.1186/alzrt72 |
[2] | Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer's disease. Nat Rev Immunol 6: 404–416. doi: 10.1038/nri1843 |
[3] | McKhann GM, Knopman DS, Chertkow H, et al. (2011) The diagnosis of dementia due to Alzheimer's disease: Recommendations from the national institute on aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7: 263–269. doi: 10.1016/j.jalz.2011.03.005 |
[4] | Prince M, Comas-Herrera A, Knapp M, et al. (2016) World Alzhemier Report 2016: Improving healthcare for people living with dementia. |
[5] | Kumar A, Singh A, Ekavali (2015) A review on Alzheimer's disease pathophysiology and its management: An update. Pharmacol Rep 67: 195–203. doi: 10.1016/j.pharep.2014.09.004 |
[6] | Hampel H, Wilcock G, Andrieu S, et al. (2011) Biomarkers for Alzheimer's disease therapeutic trials. Prog Neurobiol 95: 579–593. doi: 10.1016/j.pneurobio.2010.11.005 |
[7] | D'Andrea MR (2003) Evidence linking neuronal cell death to autoimmunity in Alzheimer's disease. Brain Res 982: 19–30. doi: 10.1016/S0006-8993(03)02881-6 |
[8] | Lopategui CI, Herrera BA, Pentón RG (2014) The role of glial cells in Alzheimer disease: Potential therapeutic implications. Neurologia 29: 305–309. doi: 10.1016/j.nrl.2012.10.006 |
[9] | Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7: 715–725. doi: 10.1038/nri2155 |
[10] | Bartos A, Fialova L, Svarcova J, et al. (2012) Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J Neuroimmunol 252: 100–105. doi: 10.1016/j.jneuroim.2012.08.001 |
[11] | Montagne A, Barnes SR, Sweeney MD, et al. (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85: 296–302. doi: 10.1016/j.neuron.2014.12.032 |
[12] | Brimberg L, Mader S, Fujieda Y, et al. (2015) Antibodies as mediators of brain pathology. Trends Immunol 36: 709–724. doi: 10.1016/j.it.2015.09.008 |
[13] | Deane R, Sagare A, Hamm K, et al. (2005) IgG-assisted age-dependent clearance of Alzheimer's amyloid beta peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci 25: 11495–11503. doi: 10.1523/JNEUROSCI.3697-05.2005 |
[14] | Craft JM, Watterson DM, Hirsch E, et al. (2005) Interleukin 1 receptor antagonist knockout mice show enhanced microglial activation and neuronal damage induced by intracerebroventricular infusion of human beta-amyloid. J Neuroinflamm 2: 1–9. doi: 10.1186/1742-2094-2-1 |
[15] | Finucane TE (2003) Alzheimer disease: Current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med 138: 400–410. doi: 10.7326/0003-4819-138-5-200303040-00010 |
[16] | Oprisiu R, Serot JM, Godefroy O, et al. (2006) Plasma amyloid-beta concentrations in Alzheimer's disease: an alternative hypothesis. Lancet Neurol 5: 1002–1003. doi: 10.1016/S1474-4422(06)70613-5 |
[17] | Sagare A, Deane R, Bell RD, et al. (2007) Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 13: 1029–1031. doi: 10.1038/nm1635 |
[18] | Oh ES, Troncoso JC, Tucker SMF (2008) Maximizing the potential of plasma amyloid-beta as a diagnostic biomarker for Alzheimer's disease. Neuromol Med 10: 195–207. doi: 10.1007/s12017-008-8035-0 |
[19] | Nath A, Hall E, Tuzova M, et al. (2003) Autoantibodies to amyloid beta-peptide (A beta) are increased in Alzheimer's disease patients and A beta antibodies can enhance A beta neurotoxicity-Implications for disease pathogenesis and vaccine development. Neuromol Med 3: 29–39. doi: 10.1385/NMM:3:1:29 |
[20] | Mruthinti S, Buccafusco JJ, Hill WD, et al. (2004) Autoimmunity in Alzheimer's disease: Increased levels of circulating IgGs binding A beta and RAGE peptides. Neurobiol Aging 25: 1023–1032. doi: 10.1016/j.neurobiolaging.2003.11.001 |
[21] | Brettschneider S, Morgenthaler NG, Teipel SJ, et al. (2005) Decreased serum amyloid beta(1-42) autoantibody levels in Alzheimer's disease, determined by a newly developed immuno-precipitation assay with radiolabeled amyloid beta(1-42) peptide. Biol Psychiat 57: 813–816. doi: 10.1016/j.biopsych.2004.12.008 |
[22] | Li QY, Gordon M, Cao CH, et al. (2007) Improvement of a low pH antigen-antibody dissociation procedure for ELISA measurement of circulating anti-A beta antibodies. BMC Neurosci 8: 11–21. doi: 10.1186/1471-2202-8-11 |
[23] | Gustaw-Rothenberg KA, Siedlak SL, Bonda DJ, et al. (2010) Dissociated amyloid-beta antibody levels as a serum biomarker for the progression of Alzheimer's disease: A population-based study. Exp Gerontol 45: 47–52. doi: 10.1016/j.exger.2009.10.003 |
[24] | Ida N, Hartmann T, Pantel J, et al. (1996) Analysis of heterogeneous beta A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271: 22908–22914. doi: 10.1074/jbc.271.37.22908 |
[25] | Gruden MA, Davidova TB, Malisauskas M, et al. (2007) Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: Autoantibodies to Aβ (25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol 186: 181–192. doi: 10.1016/j.jneuroim.2007.03.023 |
[26] | Deane R, Bell RD, Sagare A, et al. (2009) Clearance of amyloid-beta peptide across the blood-brain barrier: Implication for therapies in Alzheimer's disease. Cns Neurol Disord-Dr 8: 16–30. doi: 10.2174/187152709787601867 |
[27] | Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116: 207–225. doi: 10.1016/0022-2836(77)90213-3 |
[28] | Rosenmann H, Meiner Z, Geylis V, et al. (2006) Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer' s disease and healthy subjects. Neurosci Lett 410: 90–93. doi: 10.1016/j.neulet.2006.01.072 |
[29] | Hromadkova L, Kolarova M, Jankovicova B, et al. (2015) Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. J Neuroimmunol 289: 121–129. doi: 10.1016/j.jneuroim.2015.10.017 |
[30] | Pascual G, Wadia JS, Zhu XY, et al. (2017) Immunological memory to hyperphosphorylated tau in asymptomatic individuals. Acta Neuropathol 133: 767–783. doi: 10.1007/s00401-017-1705-y |
[31] | Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86: 342–367. |
[32] | Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: Structure, functions and pathology. Front Biosci 7: D1356–D1368. |
[33] | Mrak RE, Griffin WST (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer's disease. Neurobiol Aging 22: 915–922. doi: 10.1016/S0197-4580(01)00293-7 |
[34] | Sheng JG, Mrak RE, Bales KR, et al. (2000) Overexpression of the neuritotrophic cytokine S100 beta precedes the appearance of neuritic beta-amyloid plaques in APPV717F mice. J Neurochem 74: 295–301. |
[35] | Wu H, Brown EV, Acharya NK, et al. (2016) Age-dependent increase of blood-brain barrier permeability and neuron-binding autoantibodies in S100B knockout mice. Brain Res 1637: 154–167. doi: 10.1016/j.brainres.2016.02.026 |
[36] | Mecocci P, Parnetti L, Romano G, et al. (1995) Serum anti-GFAP and anti-S100 autoantibodies in brain aging, alzheimers-disease and vascular dementia. J Neuroimmunol 57: 165–170. doi: 10.1016/0165-5728(94)00180-V |
[37] | McIntyre JA, Wagenknecht DR, Faulk WP (2006) Redox-reactive autoantibodies: Detection and physiological relevance. Autoimmun Rev 5: 76–83. doi: 10.1016/j.autrev.2005.07.009 |
[38] | Dekosky ST, Marek K (2003) Looking backward to move forward: Early detection of neurodegenerative disorders. Science 302: 830–834. doi: 10.1126/science.1090349 |
[39] | McIntyre JA, Wagenknecht DR, Faulk WP (2005) Autoantibodies unmasked by redox reactions. J Autoimmun 24: 311–317. doi: 10.1016/j.jaut.2005.03.005 |
[40] | Cabiedes J, Cabral AR, Alarcon-Segovia D (1998) Hidden anti-phospholipid antibodies in normal human sera circulate as immune complexes whose antigen can be removed by heat, acid, hypermolar buffers or phospholipase treatments. Eur J Immunol 28: 2108–2114. doi: 10.1002/(SICI)1521-4141(199807)28:07<2108::AID-IMMU2108>3.0.CO;2-R |
[41] | Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: Cause, effect, or association? J Clin Invest 111: 163–169. doi: 10.1172/JCI200317638 |
[42] | Cuajungco MP, Faget KY, Huang XD, et al. (2000) Metal chelation as a potential therapy for Alzheimer's disease. In: Growdon JH, Wurtman RJ, Corkin S, et al. Molecular Basis of Dementia. New York: New York Acad Sciences, 292–304. |
[43] | McIntyre JA, Chapman J, Shavit E, et al. (2007) Redox-reactive autoantibodies in Alzheimer's patients'cerebrospinal fluids: Preliminary studies. Autoimmunity 40: 390–396. doi: 10.1080/08916930701421020 |
[44] | McIntyre JA, Ramsey CJ, Gitter BD, et al. (2015) Antiphospholipid autoantibodies as blood biomarkers for detection of early stage Alzheimer's disease. Autoimmunity 48: 344–351. doi: 10.3109/08916934.2015.1008464 |
[45] | Kankaanpaa J, Turunen SP, Moilanen V, et al. (2009) Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer's disease. Neurobiol Dis 33: 467–472. doi: 10.1016/j.nbd.2008.12.001 |
[46] | Weiner MW, Veitch DP, Aisen PS, et al. (2015) 2014 Update of the Alzheimer's disease neuroimaging initiative: A review of papers published since its inception. Alzheimers Dementn 11: e1–120. doi: 10.1016/j.jalz.2014.11.001 |
[47] | El Kadmiri N, Said N, Slassi I, et al. (2017) Biomarkers for Alzheimer disease: Classical and novel candidates' review. Neuroscience. |
[48] | Nagele E, Han M, DeMarshall C, et al. (2011) Diagnosis of Alzheimer's disease based on disease-specific autoantibody profiles in human sera. PLoS One 6: e23112. doi: 10.1371/journal.pone.0023112 |
[49] | Oliveira-Júnior LCD, Santos FDAA, Goulart LR, et al. (2015) Epitope fingerprinting for recognition of the polyclonal serum autoantibodies of Alzheimer's disease. Biomed Res Int 2015: 1–8. |
[50] | Reddy MM, Wilson R, Wilson J, et al. (2011) Identification of candidate IgG biomarkers for Alzheimer's disease via combinatorial library screening. Cell 144: 132–142. doi: 10.1016/j.cell.2010.11.054 |
[51] | Dubois B, Padovani A, Scheltens P, et al. (2016) Timely diagnosis for Alzheimer's disease: A literature review on benefits and challenges. J Alzheimers Dis 49: 617–631. |