Citation: Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
[1] | [ E. Afenya, Using mathematical modeling as a resource in clinical trials, Math. Biosci. and Engr., (MBE), 2 (2005): 421-436. |
[2] | [ N. André,S. Abed,D. Orbach,C. Armari Alla,L. Padovani,E. Pasquier,J. C. Gentet,A. Verschuur, Pilot study of a pediatric metronomic 4-drug regimen, Oncotarget, 2 (2011): 960-965. |
[3] | [ N. André,L. Padovani,E. Pasquier, Metronomic scheduling of anticancer treatment: The next generation of multitarget therapy?, Future Oncology, 7 (2011): 385-394. |
[4] | [ D. Barbolosi,J. Ciccolini,B. Lacarelle,F. Barlési,N. André, Computational oncology-mathematical modelling of drug regimens for precision medicine, Nat. Rev. Clin. Oncol., 13 (2016): 242-254. |
[5] | [ J. Bellmunt, J. M. Trigo, E. Calvo, J. Carles, J. L. Pérez-Garci, J. Rubió, J. A. Virizuela, R. López, M. L´azaro and J. Albanell, Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06), Lancet Oncol., 11 (2010), 350-357, http://www.ncbi.nlm.nih.gov/pubmed/20163987. |
[6] | [ G. Bocci,K. Nicolaou,R. S. Kerbel, Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs, Cancer Research, 62 (2002): 6938-6943. |
[7] | [ B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory, Series: Mathematics and Applications, Springer-Verlag, Berlin, 2003. |
[8] | [ A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences, 2007. |
[9] | [ T. Browder,C. E. Butterfield,B. M. Kräling,B. Shi,B. Marshall,M. S. O'Reilly,J. Folkman, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer, Cancer Research, 60 (2000): 1878-1886. |
[10] | [ A. Friedman,Y. Kim, Tumor cell proliferation and migration under the influence of their microenvironment, Mathematical Biosciences and Engineering -MBE, 8 (2011): 371-383. |
[11] | [ R. A. Gatenby,A. S. Silva,R. J. Gillies,B. R. Frieden, Adaptive therapy, Cancer Research, 69 (2009): 4894-4903. |
[12] | [ R. A. Gatenby, A change of strategy in the war on cancer, Nature, 459 (2009): 508-509. |
[13] | [ J. H. Goldie, Drug resistance in cancer: A perspective, Cancer and Metastasis Review, 20 (2001): 63-68. |
[14] | [ J. H. Goldie,A. Coldman, null, Drug Resistance in Cancer, Cambridge University Press, 1998. |
[15] | [ R. Grantab,S. Sivananthan,I. F. Tannock, The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells, Cancer Research, 66 (2006): 1033-1039. |
[16] | [ J. Greene,O. Lavi,M. M. Gottesman,D. Levy, The impact of cell density and mutations in a model of multidrug resistance in solid tumors, Bull. Math. Biol., 74 (2014): 627-653. |
[17] | [ P. Hahnfeldt,L. Hlatky, Cell resensitization during protracted dosing of heterogeneous cell populations, Radiation Research, 150 (1998): 681-687. |
[18] | [ P. Hahnfeldt,D. Panigrahy,J. Folkman,L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999): 4770-4775. |
[19] | [ P. Hahnfeldt,J. Folkman,L. Hlatky, Minimizing long-term burden: The logic for metronomic chemotherapeutic dosing and its angiogenic basis, J. of Theoretical Biology, 220 (2003): 545-554. |
[20] | [ D. Hanahan,G. Bergers,E. Bergsland, Less is more, regularly: Metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice, J. Clinical Investigations, 105 (2000): 1045-1047. |
[21] | [ Y. B. Hao,S. Y. Yi,J. Ruan,L. Zhao,K. J. Nan, New insights into metronomic chemotherapy-induced immunoregulation, Cancer Letters, 354 (2014): 220-226. |
[22] | [ L.E. Harnevo,Z. Agur, Drug resistance as a dynamic process in a model for multistep gene amplification under various levels of selection stringency, Cancer Chemotherapy and Pharmacology, 30 (1992): 469-476. |
[23] | [ B. Kamen,E. Rubin,J. Aisner,E. Glatstein, High-time chemotherapy or high time for low dose?, J. Clinical Oncology, editorial, 18 (2000): 2935-2937. |
[24] | [ G. Klement,S. Baruchel,J. Rak,S. Man,K. Clark,D.J. Hicklin,P. Bohlen,R.S. Kerbel, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity, J. Clinical Investigations, 105 (2000): R15-R24. |
[25] | [ O. Lavi,J. Greene,D. Levy,M. Gottesman, The role of cell density and intratumoral heterogeneity in multidrug resistance, Cancer Research, 73 (2013): 7168-7175. |
[26] | [ U. Ledzewicz,B. Amini,H. Schättler, Dynamics and control of a mathematical model for metronomic chemotherapy, Math. Biosci. and Engr., (MBE), 12 (2015): 1257-1275. |
[27] | [ U. Ledzewicz,K. Bratton,H. Schättler, A 3-compartment model for chemotherapy of heterogeneous tumor populations, Acta Applicanda Mathematicae, 135 (2015): 191-207. |
[28] | [ U. Ledzewicz,H. Maurer,H. Schättler, Minimizing tumor volume for a mathematical model of anti-angiogenesis with linear pharmacokinetics, in: Recent Advances in Optimization and its Applications in Engineering, M. Diehl, F. Glineur, E. Jarlebring and W. Michiels, Eds., null (2010): 267-276. |
[29] | [ U. Ledzewicz,H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discr. Cont. Dyn. Syst., Ser. B, 6 (2006): 129-150. |
[30] | [ U. Ledzewicz,H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. Contr. Optim., 46 (2007): 1052-1079. |
[31] | [ U. Ledzewicz,H. Schättler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009): 1501-1523. |
[32] | [ U. Ledzewicz,H. Schättler, On optimal chemotherapy for heterogeneous tumors, J. of Biological Systems, 22 (2014): 177-197. |
[33] | [ U. Ledzewicz,H. Schättler,M. Reisi Gahrooi,S. Mahmoudian Dehkordi, On the MTD paradigm and optimal control for multi-drug cancer chemotherapy, Math. Biosci. and Engr. (MBE), 10 (2013): 803-819. |
[34] | [ D. Liberzon, null, Calculus of Variations and Optimal Control Theory, Princeton University Press, Princeton, NJ, 2012. |
[35] | [ A. Lorz,T. Lorenzi,M. E. Hochberg,J. Clairambault,B. Berthame, Population adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47 (2013): 377-399. |
[36] | [ A. Lorz,T. Lorenzi,J. Clairambault,A. Escargueil,B. Perthame, Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., 77 (2015): 1-22. |
[37] | [ P. S. Malik, V. Raina and N. André, Metronomics as maintenance treatment in oncology: Time for chemo-switch, Front. Oncol., 10 (2014), 1-7, http://www.ncbi.nlm.nih.gov/pubmed/24782987. |
[38] | [ N. McGranahan and C. Swanton, Biological and therapeutic impact of intratumor heterogeneity in cancer evolution, Cancer Cell, 27 (2015), 15{26, http://www.ncbi.nlm.nih.gov/pubmed/25584892 |
[39] | [ L. Norton,R. Simon, Tumor size, sensitivity to therapy, and design of treatment schedules, Cancer Treatment Reports, 61 (1977): 1307-1317. |
[40] | [ L. Norton,R. Simon, The Norton-Simon hypothesis revisited, Cancer Treatment Reports, 70 (1986): 41-61. |
[41] | [ E. Pasquier,M. Kavallaris,N. André, Metronomic chemotherapy: New rationale for new directions, Nature Reviews|Clinical Oncology, 7 (2010): 455-465. |
[42] | [ K. Pietras,D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose "chemo-switch" regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer, J. of Clinical Oncology, 23 (2005): 939-952. |
[43] | [ L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964. |
[44] | [ H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples, Springer Verlag, 2012. |
[45] | [ Schättler,Ledzewicz, null, Optimal Control for Mathematical Models of Cancer Therapies, Springer Publishing Co., New York, USA, 2015. |
[46] | [ H. Schättler,U. Ledzewicz,B. Amini, Dynamical properties of a minimally parametrized mathematical model for metronomic chemotherapy, J. of Math. Biol., 72 (2016): 1255-1280. |
[47] | [ C. Swanton, Cancer evolution: The final frontier of precision medicine? Ann. Oncol., 25 2014), 549-551, http://www.ncbi.nlm.nih.gov/pubmed/24567514. |
[48] | [ A. Swierniak,J. Smieja, Cancer chemotherapy optimization under evolving drug resistance, Nonlinear Analysis, 47 (2000): 375-386. |
[49] | [ S. Wang,H. Schättler, Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity, Math. Biosci. and Engr. -MBE, 13 (2016): 1223-1240. |
[50] | [ J. Wares,J. Crivelli,C. Yun,I. Choi,J. Gevertz,P. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Math. Biosci. and Engr. -MBE, 12 (2015): 1237-1256. |
[51] | [ S. D. Weitman,E. Glatstein,B. A. Kamen, Back to the basics: the importance of concentration × time in oncology, J. of Clinical Oncology, 11 (1993): 820-821. |