Citation: Henryk Leszczyński, Monika Wrzosek. Newtons method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion[J]. Mathematical Biosciences and Engineering, 2017, 14(1): 237-248. doi: 10.3934/mbe.2017015
[1] | [ K. Amano, Newton's method for stochastic differential equations and its probabilistic second-order error estimate, Electron. J. Differential Equations, 2012 (2012): 1-8. |
[2] | [ Z. Brzeźniak,M. Ondreját, Weak solutions to stochastic wave equations with values in Riemannian manifolds, Commun. Part. Diff. Eq., 36 (2011): 1624-1653. |
[3] | [ P. Caithamer, The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise, Stoch. Dynam., 5 (2005): 45-64. |
[4] | [ P.-L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab., 12 (2002): 361-381. |
[5] | [ D. Conus,R. C. Dalang, The non-linear stochastic wave equation in high dimension, Electron. J. Probab., 13 (2008): 629-670. |
[6] | [ R. C. Dalang, Extending martingale measure stochastic integral with applications to spatially homogeneous spdes, Electron. J. Probab., 4 (1999): 1-29. |
[7] | [ R. C. Dalang, The stochastic wave equation, A Minicourse on Stochastic Partial Differential Equations, in Lecture Notes in Math., 1962 (2009), Springer Berlin, 39-71. |
[8] | [ R. C. Dalang,C. Mueller,R. Tribe, A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other P.D.E.s, Trans. Amer. Math. Soc., 360 (2008): 4681-4703. |
[9] | [ R. C. Dalang,M. Sanz-Solé, Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three, Mem. Amer. Math. Soc., 199 (2009): 1-70. |
[10] | [ E. Hausenblas, Weak approximation of the stochastic wave equation, J. Comput. Appl. Math., 235 (2010): 33-58. |
[11] | [ J. Huang,Y. Hu,D. Nualart, On Hölder continuity of the solution of stochastic wave equations, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014): 353-407. |
[12] | [ S. Kawabata and T. Yamada, On Newton's method for stochastic differential equations, in Séminaire de Probabilités XXV, Lecture Notes in Math., 1485 (1991), Springer Berlin, 121-137. |
[13] | [ J. U. Kim, On the stochastic wave equation with nonlinear damping, Appl. Math. Optim., 58 (2008): 29-67. |
[14] | [ C. Marinelli,L. Quer-Sardanyons, Existence of weak solutions for a class of semilinear stochastic wave equations, Siam J. Math. Anal., 44 (2012): 906-925. |
[15] | [ A. Millet,M. Sanz-Solé, A stochastic wave equation in two space dimensions: Smoothness of the law, Ann. Probab., 27 (1999): 803-844. |
[16] | [ M. Nedeljkov,D. Rajter, A note on a one-dimensional nonlinear stochastic wave equation, Novi Sad Journal of Mathematics, 32 (2002): 73-83. |
[17] | [ S. Peszat, The Cauchy problem for a nonlinear stochastic wave equation in any dimension, J. Evol. Equ., 2 (2002): 383-394. |
[18] | [ L. Quer-Sardanyons,M. Sanz-Solé, Absolute continuity of the law of the solution to the 3-dimensional stochastic wave equation, J. Funct. Anal., 206 (2004): 1-32. |
[19] | [ L. Quer-Sardanyons,M. Sanz-Solé, Space semi-discretisations for a stochastic wave equation, Potential Anal., 24 (2006): 303-332. |
[20] | [ M. Sanz-Solé,A. Suess, The stochastic wave equation in high dimensions: Malliavin differentiability and absolute continuity, Electron. J. Probab., 18 (2013): 1-28. |
[21] | [ J. B. Walsh, An introduction to stochastic partial differential equations, in: É cole d'été de Probabilités de Saint-Flour XIV, Lecture Notes in Math, 1180 (1986), Springer Berlin, 265-439. |
[22] | [ J. B. Walsh, On numerical solutions of the stochastic wave equation, Illinois J. Math., 50 (2006): 991-1018. |
[23] | [ M. Wrzosek, Newton's method for stochastic functional differential equations, Electron. J.Differential Equations, 2012 (2012): 1-10. |
[24] | [ M. Wrzosek, Newton's method for parabolic stochastic functional partial differential equations, Functional Differential Equations, 20 (2013): 285-310. |
[25] | [ M. Wrzosek, Newton's method for first-order stochastic functional partial differential equations, Commentationes Mathematicae, 54 (2014): 51-64. |