MATHEMATICAL BIOSCIENCES d0i:10.3934/mbe.2017015
AND ENGINEERING
Volume 14, Number 1, February 2017 pp. 237-248

NEWTON’S METHOD FOR NONLINEAR STOCHASTIC WAVE
EQUATIONS DRIVEN BY ONE-DIMENSIONAL
BROWNIAN MOTION

HENRYK LESZCZYNSKI AND MONIKA WRZOSEK*

Institute of Mathematics, University of Gdansk
Wita Stwosza 57
80-952 Gdansk, Poland

ABSTRACT. We consider nonlinear stochastic wave equations driven by one-
dimensional white noise with respect to time. The existence of solutions is
proved by means of Picard iterations. Next we apply Newton’s method. More-
over, a second-order convergence in a probabilistic sense is demonstrated.

1. Introduction. In 1960’s wave equations subject to random perturbations at-
tracted a lot of attention due to their applications in physics, relativistic quantum
mechanics and oceanography to name a few. We give a brief review of problems
being discussed in the literature. For the introduction to the theory of stochastic
wave equations (SWE) see [7), 21]. Existence results for nonlinear SWE including
random field solutions and function-valued solutions are given in [5] [6, [I7]. Weak
solutions to semilinear SWE are treated in [I4]. Various regularity properties of
solutions and their densities, e.g. absolute continuity and smoothness of the law,
Holder continuity, Malliavin differentiability, are investigated in [9] [T}, 15 18] 20].
Asymptotic properties of moments are considered in [§]. SWE with polynomial
nonlinearities are studied in [4]; SWE with values in Riemannian manifolds in [2].
The case of SWE driven by fractional noise is presented in [3]. Several results for
damped SWE are proposed in [13]. In [I6] a class of semilinear SWE is solved in the
framework of Colombeau generalized stochastic process space. Various numerical
methods are applied to SWE in [19, 22| [10].

Newton’s methods for stochastic differential equations are studied by Kawabata
and Yamada in [I2] and Amano in [I]. In [23] we derive further nontrivial gen-
eralizations to the case of stochastic functional differential equations with Hale
functionals. In [24] and [25] we establish the convergence of Newton’s method for
stochastic functional partial differential equations of parabolic and first-order hy-
perbolic types.

Since various phenomena are concerned with the delay dependence on one vari-
able, we employ one-dimensional Brownian motion. In this case the main tool in
proving our results is the Doob inequality. The case of two-dimensional Brownian
motion requires more advanced techniques.

The paper is organized as follows. In Section 2 we introduce basic notations and
formulate the initial value problem for nonlinear stochastic wave equations. The
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existence of solutions is proved by means of successive approximations (Section 4).
Next we establish a first-order convergence (Section 5) and a probabilistic second-
order convergence (Section 6) of Newton’s method. The results in Section 4 and
5 base on two lemmas presented in Section 3: a two-dimensional Gronwall-type
inequality and an estimation of solutions to a class of nonlinear stochastic wave
equations.

Our results can be applied to periodic boundary value problems. This can be
done by means of appropriate extensions of the data onto the real line (reflection
principles).

2. Formulation of the problem. Fix T' > 0. Let (2, F, P) be a complete proba-
bility space, W = (Wt>te[0,T] the standard Brownian motion, (F¢)c[o,7] - its natural

filtration and W; - the respective white noise. The space of all continuous and (Fp)-
adapted processes X : [0,T] — R is equipped with the seminorms

X2 =E [ sup |Xs|2] for t € [0, T.

0<s<t

For (t,z) € [0,T] xR let Cy , be the wave cone with vertex (¢, z), that is the triangle
delimited by the points (¢, z), (0,2 +t), (0,2 — t):

Cro={(s9):0<s <t |y—a| <t—s}.

We say that a function ¥ : [0,7] x R — R is increasing w.r.t. cones if U(s,y) <
U(t,z) for all (s,y) € Cty. It means that

Csy CCLy=Y(s,y) <U(t,x).

Consider the following initial value problem for the nonlinear stochastic wave equa-
tion with nonlocal dependence

0? o? :
87;; - 8736’[; = f(t’$7u("w)) +g(t7x,u(~,x))Wt for (t,l‘) € [O,T] X R,
u(0,z) = ¢(x) forzeR, (1)
%(O,x) = ¢(z) forzeR,

where u(-,z) is understood as being defined on [0,¢], functions ¢(z), (x) are
continuous, independent of the Brownian motion and such that E [\¢|2] < 00,
E[[¢?] < oo, f(t,2,-),9(t z,-) : C([0,t]) = R are continuous, Fréchet differen-
tiable functions that satisfy the Lipschitz condition:

|f (tz,0) = f(ta,0)] < L(t,w)oggtIv(f)—@(tﬁI (2)
lg (t,z,0) — g (t,2,0)] < L(tvx)oi%gtlv(f)*’f)(f)l (3)

for some function L : [0,7] x R — R, increasing w.r.t. cones and v,7 € C([0,¢]),
where C([0,¢]) is the space of all continuous real-valued functions on [0,¢]. Let U
denote the space of continuous and Fi-adapted processes u : [0,7] x R — R such
that |u(-, z)|r < oo, u(-, ) is a diffusion with respect to W, wu(t,-) is a continuous
function, u = u(t, ) is measurable w.r.t. the o-field generated by F; x B(R), where
B(R) are the Borel subsets on R.
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u € U is a solution to if it satisfies the integral equation

ol —t)+ (e +t

x+t
ultz) = L2 [ vy (@

1 1 t $+(t—s)
+ 5 f(s,y,u(s,y))dyds—i— 5/ / g(s,y,u(s,y))dy dW57
0 T

(o —(t—s)

which is based on d’Alembert’s formula corresponding to and the stochastic
integral is of It6 type. This equation is satisfied P-almost surely. The exceptional
set is independent of ¢, x.

3. Estimation of solutions. We formulate a two-dimensional Gronwall-type
lemma.

Lemma 3.1. Suppose that U, K : [0,T] x R — R are continuous and increasing
w.r.t. cones. If z:[0,T] x R — Ry is continuous and satisfies

1 1
dtn) < 5 [ Wewdyds+ g [ K(s)(sg)duds, (ta) € 0.7)x B,
Ct,a: Ct,z

then

z(t,x) < Kl(t,x)/ U(s,y)dyds,
Ct,e

where Ki(t,z) = %etQK(t’””).

Proof. We conduct the proof for a function z(¢,z) that is increasing w.r.t. cones.
The general case can be reduced to that one by defining

z(t,r) = max 2(s,y)-
(t, ) (max (s,9)

The function z satisfies the same integral inequality and z < z. Let

1 1
) =g [ Weadids g [ K()ss)duds

t,x Ci o
Then z(t,z) < 2(t, ). The function 2(¢,z) is C?, £(0,z) = £2(0,z) = 0 and
0? 0?

= Atx) = U(ta)+ K(ta)(t x)

< U(t,z) + K(t,z)2(t, x).
Fix a cone C, ,, with a vertex (tg,z0) € [0,T] x R. Since K is increasing w.r.t.
cones, we have
0? 0?
ta) — —
z) 0x?

for (t,z) € Cty.4,- The solution to is estimated by any solution to the following
comparison inequality

Pkl dtr) < W(tx)+ K(te, 20)i(t, x) (5)

0? _ 0* _ -
@z(t,m) - @z(t,x) > U(t,x) + K(tg, z0)Z(t, ) (6)
with zero initial conditions. Our goal is to find a function ® : [0, 7] — R such that

1

Z(t,x) = 5/0 D(s)W(s,y)dyds
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satisfies @ By d’Alembert’s formula it is a solution to the wave equation

0% _ 0% _
@z(t, x) — @z(t,x) = O(t)U(t, z).
Hence (@ takes the form
BU(t2) > W(t.0) + 3 K(t0,00) [ @(5)¥(s. )iy (")
Ci o

Utilizing the fact that ¥ is increasing w.r.t. cones, we enlarge the right hand side
of and find the solution to a stronger inequality

Bt ) > U(t,2) + K (to, 20)U (¢, 2t /0 " (s)ds.

It suffices to take
D(t) = etotK (to,o)

Hence

1
) S 3ta) £ g KO [ s,y dyds
Ciz
for (t,x) € Cty.uy, in particular we can take (tg,zo) = (¢,z). This completes the
proof. O

By C*(]0,¢]) we denote the space of all linear and bounded functionals T :
C([0,t]) — R with the norm

[T = sup|Twl,
v

where the supremum is taken over all v € C([0,¢]) whose uniform norms do not
exceed 1.

In the following lemma we give an estimation of solutions to nonlinear stochastic
wave equations.

Lemma 3.2. Suppose that oV, a® : [0,T] x R — U are continuous, T (t,z),
T (t,x) : C([0,T]) — R and there exists a function L : [0,T] x R — R increasing
w.r.t. cones such that

T(i)(t,x)[ < L(t,z) for (t,z) € [0,T] xR, i=1,2. (8)

If u € U satisfies the stochastic wave equation

2 2 )
% - % = a® 4 7Oy, z) + (a<2> + T(z)u(~,x)> Wi, (t,x)€[0,T] xR
u(0,2) = 0, %U(O,x) =0, z€R,
then we have
u(2)f < Ku(t,) /C (72100 p)E + 4@ (p)2) dyds — (9)

for (t,x) € [0,T] x R, where

1 ,
Ki(t,z) = §e2t2(Tz+4)L2(t’“) for (t,z) €[0,T] xR. (10)
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Proof. By d’Alembert’s formula and the elementary inequality (a+b)? < 2(a?+b?),
we have

B 2
B swp o | < E|sw | [ (a0 + T 0)u(s0) duds
0<i<t o<i<t |JC;,
B 2
+ B sw | [ (@) + T (s p)uls,n) dydV.
0<i<t Cf,w

= Il —|—IQ

By the Schwarz inequality and () we obtain

R l sup / (oz(l)(s, y) + T(l)(s,y)u(s,y)>2 dyds]

0<i<t JCj ,

t?E l/cm (a(l)(s, y) + T (s, y)uls, y))2 dyds}

2752/0 e ()2 dyd8+2t2/c L2(s,y)|ul-,y)|? dyds.

I

IN

IN

IN

By the Doob inequality, the It6 isometry and we have
2
I, = E| sup

i r+(ffs)
! / (/ (a0 + T s )uts,y)) dy) W
0<t<t |/0 x—(t—s)

z+(t— s) 2
AE [/ / a®(s,y) + TP (s,y)u(s ,y)> dde]
(t—s)

8 / 0@ (. y)[2 dyds +8 / L2(s,9)lu(-, y)|2 dyds.
C, C

t,x t,x

IN

IN

Hence

W < 2 [ [Pl + 40 )] dyds

t,a

+ 2<t2+4>/0 L2(s, ) ul )2 dyds.

Applying Lemma we obtain

et < Lo |

< (T21aV 9 + 0@ ()2 dyds
Ct‘z

for (t,x) € [0,T] x R. O

Remark 1. If T() = T(?) = 0, then one derives the assertion (9) with K (¢,z) = 3.

4. Existence of solutions. We formulate an iterative scheme for problem .

Let
uO(t,z) = DA HY / By (11)
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and
2 2 )
Tt - T = g (10 a0, 0) g (12l ) W,
(t,x) € [0,T] xR
u®(0,2) = ¢(z), zeR, (12)
%u(k)(O,x) = ¢x), z€R.

If we denote the increments Au® = ¢+ — () then we have

2 2
O autery - e 7 (w0 m)) = 7 (b0 ()

ot? Ox?
[g (t,x,u(kﬂ)(',x)) -9 (t, x,u(k)(~,x)>} W,

+

for (¢t,z) € [0,T] x R.

Theorem 4.1. Under the Lipschitz condition and , the sequence (u(k))keN
defined by converges to the solution u of equation in the following sense

lim [u® (-, 2) — u(-, z)
k—o0

=0 fortel0,T].

t

Proof. We show that the sequence (u(k)) keN, generated by the above Picard itera-
tion scheme, satisfies the Cauchy condition with respect to the norm |- |;. Applying
Lemma [3.2] with

TO#z) = TO®tz)=0
aWita) = (b)) - f (Lou®(,)
a(z)(t?x) = g (t,x,u(k+1)(-,x)> —9g (t,x,u(k)(-,x))

together with the Lipschitz condition , we obtain

’Au(kJrl)(',x)

2 1 2
<3@ ) [ 2|8 )] dyas.
t C s

t,a

Since L : [0,T] x R — R is increasing w.r.t. cones, we get

’Au(k"’l)(.’m)r < %(TQ +4)L2(t,x)/

> ‘Au(k)('7 y)
t Ct,z

2
dyds.

Hence

? < [3(T% + 4)L2(t7x)]k+l 2(k+1)
t (k+1)!

2
‘Au<k+1>(.,x)‘ ‘Au(o)(-,x)‘ . k=0,1,....

t

Thus the sequence (u(k)) kN defined by converges to the solution u of equation
. This completes the proof. O

Remark 2. The first increment Au(®) in the scheme is estimated in L? by
some function Cy(t, z).
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5. First-order convergence of Newton’s method. We formulate Newton’s
scheme for problem which starts from the function u(?) given by .

872 (k+1) _ iz (k+1) — (k) (k) (k)
Pk peL —f(t,a:,u (-, ))—i—fw (ta:u (-, ))Au (,x)
+ [g (t,x,u(k)(-,x)) + 9o (t,x7u(k)(-,x)) Au(k)(-,x)] W,
for (t,z) € [0,T] xR, (13)
u™(0,2) =¢(z), for z € R,

ZuF) -
pr (0,z) =¢(z), for x€R.

We have the following differential equation for the increments AwuF+1):
%Au(k+l) _ %Au(kﬂ)
= f (t,ac,u(kﬂ)(',:n)) —f (t,x,u(k)(~,x)> —fu (t,x,u(k)(~,x)) Au®) (-, 2)
+ fo (o u® (o)) Aut () (14)
+ [g (t,x, u(k+1)(~,x)> —g (t, m,u(k)(~7x)) — Gu (t,x,u(k)(-, :1:)) Au(k)(~7x)} W,
+ g (t,x,u(k+1)(~,x)> ARV ()W, for (t,z) € [0,T] x R
with zero initial values.

Theorem 5.1. Suppose that there exists a function L : [0,T] x R — R increasing
w.r.t. cones such that

\fo(t,2)|; < L(t,z), |go(t,z)|; < L(t,z) for (t,x) €[0,T] xR,  (15)
which implies the Lipschitz condition and for f and g. Then the Newton
sequence (u(k))keN defined by converges to the unique solution u of equation
in the following sense

lim ‘u(k)(~,a:) —u(-,z)
k—o00

=0 fortel0,T].

t

Proof. We show that (u®)),cn satisfies the Cauchy condition with respect to the
norm | - |¢. We apply Lemma [3.2 with

a®(t.a) = f (ta,u® () = f (ta u(k)(~ ) = fo (o u® (2)) 2 (),
a®(t,2) =g (Lo, ™ (2)) = g (t2,u® () = gu (t2,0P () AuP (),
TO () = fo (1o, u*) (7;5)),

TO(tw) = gu (tw, ™ ().

Hence and by , , we get

2 2
M) < AT MKt [ 2226 |8 duds
t Ct,:c S
2
< A(T? + N)K,(t,2)L2(t,z) / ’Au(k)(',y) dyds.
Ct,x s
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Thus

2 Jk+1(t, x)tZ(kJrl)
t (k+1)!

Aulk+D (. x)‘ ‘Au(m@ )

t
where
J(t,x) = 4(T% + N)K, (t, x) L*(t, x)

and K (t, ) is given by . Thus the Newton sequence (u(k))keN defined by
converges to the solution u of equation . O

6. Probabilistic second-order convergence of Newton’s method. The fol-
lowing theorem establishes a second-order convergence of Newton’s method in a
probabilistic sense.

Theorem 6.1. Assume that there exists a function L : [0,T] x R — Ry increasing
w.r.t. cones such that

[fo(t, @)y < L(t ), |gu()ls, < Lt,2)  for (t,2) € [0,T] xR,

which implies the Lipschitz condition and for f and g. Suppose additionally
that there exists a function M : [0,T] x R — Ry increasing w.r.t. cones such that

|fv(t7 €z, u('? I)) - fv(tv x, ’L_L(~, ZE))|: < M(tv 'T) Oil;gt |’LL(£, ‘T) - ’U’(Ev .17)|, (16)
|gv(t’ €T, u(" 'T)) - gv(t7 z, @(-, 33‘))|: < M<t7 m) OS<1?<)t |u(t~’ x) - @(f, $)| (17)

Then for any T > 0 there exists a function H : [0,T] x R — R such that

r (Sup AuP(sz)<p = sup |Au<’“+1><s,x>|<sz>
0<s<t 0<s<t

>1—H(t,z)R™>
foral R>0,0<p<1,k=0,1,2,...
Proof. Let a cone Ci, ,, be fixed. Define the sets

A(p’ft) = {w: sup [AuM(F 1) < p, 0<s<t, zg— (tg—s) <<z + (to —s)}
0<i<t

for 0 < p<1,0<t<T, k=01,2,.... We consider the sequence (Au'®))ey
restricted to the sets Afft) . For this reason we apply d’Alembert formula to equation

and multiply it by 1 ), the characteristic function of the set AE)kt) , to obtain
Pt !

1,09 Aul (. 2)

1
= sl [ (T 1 At s,) ) duds
[k Ct,z

1 t z+(t—s) . - -
" 2 1A(Plft)/0 /ac(ts) (T-‘§ '(5,9) + g5V (5, y) AutF )(572/)) dy | dWs
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for (¢t,z) € [0,T] x R, where

T (¢, 2) = AFO (t,2) — £O (1, 2) Au® (2, 2)

(t,z)
(t, )
[Pa) = £ (taa® (), o (ta) =g (te,u®(,0),
(t, )
(t,x) = Ag®(t,2) — g (¢, 2) Au® (¢, )

If

F(t,z) =T (t,2) + fED (E 2) AutH D (- 2),
Gt,x) = TP (t, ) + g% +V (¢, 2) Au+V (-, z),

then we have

2
2 1
].A(kt) Au<k+1)(~,x) < §~2E ].A(kt) sup / F(k)(s,y)dyds
o g Pt o<iE<t 7

1 t S

+ - 2E |10 sup // G(k (s y)dydW
2 Apt 0<i<t

= Il + IQ.

Notice that for s < ¢t we have the monotonicity property

AT AR = a1

Pyt

(k) =1

A ALY L g ()

Hence

2
I

IN
=

1A(k) sup
p;t ind
0<i<t

/c 1A5f,“.2 F(s,y)dyds

tx

2

IN
=

sup
0<i<t

/c 1A§,’fg F(s,y)dyds

fx

By the Schwarz inequality we obtain

L < #E sup/ 1,00 [F(s,y)|*dyds
0<i<t/C;, ~°°
2
< 28 s [ 1 [AFO6) — #6080 )] dys
0<#<t J Cy, [
+ 2t°E bup/ A““) FEFD (5, ) AuFH (s, y)‘ dyds| .
0<i<t/Cx,
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From the fundamental theorem of calculus and by it follows that
APt 2) = 9t 2) Au ()

< sup
0<s<t

1

|,

0

1 2

< —M(t,xz) sup ’Au(k)(s,x)‘ .
2 0<s<t

Au®) (s, :17)‘

*

do

S

fo (s,x,u(k)(s,z) + 9Au(k)(s,z)) — fu (s,z,u(k)(s,x))

Hence by we get

1
L 2’

IN

sup / 1,0 M?(s,y) sup
0<i<tJC £25 0<3<s

4
Au®) (3, y)‘ dyds]

tx

+ 2°E l sup / 1A(p’“> L?(s,y) sup
c .8

0<i<t 0<3<s

2
AulFHY (3, y)‘ dyds]

t,x

Lo 2
515 E [/Cu 1A;Ifz M*(s,y) sup

0<5<s

IN

4
Au® (3, y)’ dyds]

+ 26°FE [/ 1,0 L%(s,y) sup
Crw “7°

0<5<s

2
AuFH (3, s)’ dyds] .

Recall that |[Au®)(5,y) <p on Af)lfs) for 0<5<s. Thus

1
I < §t2p4 M?(s,y)dyds + 2t2/

L2(87 y) ‘1A(’9) Au(k+1)('a y)
Ctz Ct,z 28

2
dyds.

By the monotonicity property of 1, and the Doob inequality we have
p,t

i x4+ (t—s)
/ / i 1A§)k-g G(s,y)dy | dW,
0 z—(t—s) ’

/ 1,0 1G(s,y)|* dyds | .
Ciw P°

2

I, < E| sup
0<i<t

< 4E

Hereafter we estimate I similarly as I; and get

I, < = -2pt M2(s,y)dyds+2~4/

1 2
5 L*(s,y) ‘1A<k> AuFH ()| dyds.
2 Ct,:n ct,w e S

Finally we have the estimate

2 1
L9 A0 2) < Sp' (T2 +2) [ MP(s,y)dyds
p,t t Ct,a:

2
+ 2(T? + 4)/ L?(s,y) ’]_A(k) AuFY ()| dyds.
Ct,x os S
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Applying Lemma [3.2] we get

2
‘1A(k) AuFFD (. m)‘ < Ky(t,x)pt(T? 4 4) M?(s,y)dyds
oot t ct,a:

1
< §p‘*Tz(T2 + 4)M?(t,z) exp(4(T? + 4)t*L3(t, z)).
Hence

2 1
‘1A<k> Aut+D (., x)‘ < PTAT? + )Mt @) exp(4(T? + )L (L, ).
Pt t

The Chebyshev inequality yields

P( sup |Au® (s,2)[<p A sup |AuFTI(s,2)] > Rp2>

0<s<t 0<s<t

1 2
_ (h+1) 2) < 1 (k1)
= P(lAgjg Sup [AuTT s, @)l >Rp) = R ‘1,4;{92 Au (,x)\t

< %TQ(TQ + A)M2(t, ) T HDELAED) R=2 — [ (¢ 2)R™2

Thus we have

r <Sup AuP(s,z)<p = sup |Au<’f+1><s,x><RP2>
0<s<t 0<s<t

>1— H(t,z)R™>
foral R>0,0<p<1,k=0,1,2,... O

Remark 3. All results of the paper carry over to SWE on an interval with periodic
boundary conditions. These results are just simple consequences of our theorems.
In the case of uniform Dirichlet boundary conditions (u(t,0) = u(¢,1) = 0) one can

extend the initial data ¢(z), 1 (z) to 2-periodic odd functions ¢(z), 1 (z). In the case

of Neumann boundary conditions (Zu(t,0) = Zu(t,1) = 0) we use the reflections

with respect to lines z = k for k € Z.
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