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Abstract. Effects that tumor heterogeneity and drug resistance have on the
structure of chemotherapy protocols are discussed from a mathematical mod-

eling and optimal control point of view. In the case when two compartments

consisting of sensitive and resistant cells are considered, optimal protocols con-
sist of full dose chemotherapy as long as the relative proportion of sensitive

cells is high. When resistant cells become more dominant, optimal controls

switch to lower dose regimens defined by so-called singular controls. The role
that singular controls play in the structure of optimal therapy protocols for cell

populations with a large number of traits is explored in mathematical models.
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1. Introduction. The administration of cancer chemotherapy has for a long time
followed established principles based on dose intensity and dose effect. Although the
resulting schedules have at times been questioned [23, 51], it is only more recently
that these principles are being reexamined in view of new biological approaches
and medical considerations. In traditional therapy protocols, cytotoxic agents are
administered at maximum tolerated doses (MTD) to counteract disease progression
and to kill as many cancer cells as possible. This approach requires treatment breaks
to let the body recover from treatment induced toxicity. On the other hand, some
experimental and clinical studies attest that “more is not necessarily better” (e.g.,
[20]). Alternative types of protocols which take into account the highly complex
interactions of a tumor with its microenvironment may give a better outcome or
may be able to control a resistant tumor. In this context, the concept of metro-
nomic chemotherapy was introduced in 2000 (e.g., see [6, 9, 20, 24]). Metronomic
chemotherapy (MC) is the administration of chemotherapeutic agents at lower than
maximum doses without prolonged breaks [2, 3]. It has been shown that aside from
lower cytotoxic effects, such schedules also exhibit antiangiogenic and pro-immune
effects (see [21] for a comprehensive summary of the medical literature on this topic).
These are both very important aspects of a tumor’s microenvironment which usu-
ally have been analyzed and modelled separately (e.g., see [10, 18, 30, 50]). Another
aspect that should be taken into account in designing cancer therapy protocols is the
effect it has on heterogeneous tumor populations. According to the Norton-Simon
hypothesis, the population of cells which are sensitive to a specific chemotherapy
drug grow faster than the ones which are resistant [39, 40]. In part, this may be be-
cause of the strategies developed by clones to become resistant (i.e., by activating or
upregulating pathways that use up energy that then cannot be used, for instance,
for proliferation) [11, 12]. While the higher proportions of sensitive cells implies
that the majority of cells can be killed, this may turn into a disadvantage when an
unsuitable type of therapy protocol is administered. For example, the application
of MTD type chemotherapy leads to the selection of resistant strains through the
annihilation of sensitive ones. This in turn leads to drug resistant strains becoming
dominant and then therapy is no longer effective [13, 14].

In this paper, we address this topic from a mathematical modeling and optimal
control point of view. We briefly recall a mathematical model for evolving drug re-
sistance that was introduced by Lorz et al. in [35, 36] and expanded upon by Greene
et al. in [16, 25]. In this model, various sub-populations of cells indexed by a vari-
able x ∈ [0, 1] are considered. This variable x merely labels these groups which may
have different replication or death rates and/or other distinguishing features such as
varying chemotherapeutic sensitivities with respect to anti-cancer drugs considered
in the model. Such properties may be related to different fitness properties of these
cells, but no specific mechanism is assumed here. For such a model, we formulate an
optimal control problem with the objective to minimize the total number of cancer
cells, both at the end of therapy and over the therapy interval, while at the same
time minimizing the toxicity of the drugs. Optimal solutions then achieve a balance
between these two competing objectives. The optimal control problem obtained
in this way is infinite-dimensional and has a mathematical structure for which a
solution cannot be given with the use of classical tools or methods. Therefore we
consider finite-dimensional approximations. Indeed, it is one of the main conclu-
sions of the work of Lorz et al. [35, 36] and Greene et al. [16, 25] that evolutionary
principles will lead to a selection of those sub-populations that have the highest
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net proliferation rates in a given environment. These will become dominant and
outperform those sub-population that have lower performance parameters. In view
of this observation, there actually are good reasons to look at problems with a finite
number of levels. The most rudimentary approach is to consider a single drug and
only account for two main classes, populations that are resistant and sensitive with
respect to this drug’s actions. Below, such a model, which is based on equations
originally formulated by Hahnfeldt et al. in [19] is considered. An analysis of this
model as an optimal control problem was given in [32] and an extension that also
included a third class of partially resistant cells was presented in [27]. In either
model, as the resistant population achieves a certain level, optimal controls favor
lower dose administrations. In this paper, we put these results within the frame-
work of the more general model briefly mentioned above and relate them to the
ideas of chemo-switch protocols and metronomic chemotherapy. Optimal protocols
coming from our analysis support the thesis that “more is not necessarily better”
by highlighting the role of what in the mathematical literature are called singu-
lar controls. These represent treatment protocols with lower partial doses. More
specifically, it is shown that the choice of the dosage depends on the whole biologi-
cal condition of the system. There exists a region corresponding to tumor volumes
with a high fraction of sensitive cells where MTD (full dose) treatment protocols are
the optimal choice. However, once the sensitive cell population becomes depleted
beyond a certain threshold, singular controls become optimal. This corresponds to
the medical concept of “chemo-switch” protocols when an initial period of full dose
chemotherapy session is followed by a prolonged period of low dose metronomic
chemotherapy [42].

2. Optimal control for chemotherapy under tumor heterogeneity. We
briefly describe a mathematical model for phenotypic heterogeneity and drug resis-
tance in solid tumors that considers a continuum of possible traits. This model was
originally formulated in the work of Lorz et al. [35, 36] and then expanded upon by
by Greene et al. [16, 25] as a means to explain the roles that increasing cell densi-
ties and mutations play in the emergence of specific traits which become dominant.
Essentially, as a response to different net growth rates, the ‘fitter’ phenotypes (in
the model these simply are the ones that have the highest net proliferation rates)
crowd the less fit cells and limit their growth. We recall this model.

2.1. An optimal control problem with a continuum of traits. In the model,
a continuum of possible traits (phenotypes) x, x ∈ [0, 1], is considered. If n(t, x)
denotes the population density of cells with trait x at time t, then the total number
N(t) of cancer cells at time t is given by

N(t) =

∫ 1

0

n(t, x)dx. (1)

The variable x merely indicates that there exist sub-populations that have distin-
guishing features such as different replication and/or apoptosis rates or may react
differently to specific chemotherapeutic drugs. Thus the replication rate r and the
natural death rate µ of cancer cells are taken as functions of x, r = r(x) and
µ = µ(x). Some of these functions could be constant on some subsets of [0, 1] or
even on all of it. The main reason for considering sub-populations x lies in modeling
the effects of chemotherapy. Making the linear log-kill hypothesis, we denote the
cytotoxic killing parameter under treatment with a specific chemotherapeutic agent
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by ϕ = ϕ(x) depending on the trait x of the sub-population. Thus, and using a
model of exponential growth for the cells, one arrives at the following dynamics:

∂n

∂t
(t, x) = (r(x)− ϕ(x)c(t)− µ(x))n(t, x). (2)

Most cytotoxic agents merely prevent further cell divisions and for this reason the
killing terms are subtracted from the reproduction rate r.

More realistically, the rates for cell division and apoptosis not only depend on
the trait x, but also on the cell density which itself is closely related to the total
tumor mass N [15]. Taking this into account, Greene et al. [16] modify equation
(2) to become

∂n

∂t
(t, x) = {f(N(t)) (r(x)− ϕ(x)c(t))− g(N(t))µ(x)}n(t, x) (3)

with f = f(N) and g = g(N) positive, non-dimensional functions of the total
tumor size N . Mathematically, equation (3) can be simplified by rescaling the time
variable t. Let G(N) = g(N)/f(N) and define a new time variable τ , τ : t 7→ τ(t),

as τ(t) =
∫ t

0
f(N(s))ds. Setting ñ(τ, x) = n(t(τ), x) and c̃(τ) = c(t(τ)), one obtains

the simpler expression

∂ñ

∂τ
(τ, x) = {r(x)− ϕ(x)c̃(τ)−G(N(τ))µ(x)} ñ(τ, x). (4)

This new time-scale has the advantage that only the apoptosis rates are changed.
But note that the new time scale no longer is linear, so it does not contain units
such as [days], [weeks] etc. These only make sense after reverting to the original
scale.

The model is nonlinear with the right-hand side exhibiting similar features as a
logistic term of the form (a−bN)N . If one assumes that the growth rate f decreases
with increasing cell density while the apoptosis rate g increases—and these are
reasonable assumptions—then the scaling factor G is monotonically increasing. As
this term offsets the balance between growth and apoptosis, the population will
stabilize. Thus, while (2) represents a model of exponential growth that generates
unbounded total populations, incorporating cell densities into the model in (3)
introduces a logistic structure that generates finite carrying capacities [16, 45].

We are interested in the following optimal control problem. For notational con-
venience we revert to the original labeling with t and n.

[Het]: With α, β and γ row vectors of positive weights, minimize

J = J(u) = αN(T ) +

∫ T

0

(βN(t) + γu(t)) dt (5)

over all Lebesgue measurable functions u = (u1, . . . , um)T , ui : [0, T ] →
[0, umax

i ], subject to the dynamics

∂n

∂t
(t, x) =

[
r(x)−

m∑
i=1

ϕi(x)ci(t)−G(N(t))µ(x)

]
n(t, x), (6)

ċi(t) = −kici(t) + ui. (7)

In this formulation, we consider a multi-input optimal control problem that allows
for combinations of various drugs. Each of them is endowed with its own drug
specific sensitivities of the subpopulations with trait x defined by the functions
ϕi(x). In principle, some traits x may be sensitive to drug 1, but less sensitive
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or even resistant to drug 2. Equation (7) is the standard one compartment linear
pharmacokinetic model for the concentration of the ith agent if the dose rate is
given by ui. The dependence of the model on the traits x makes this a highly
unconventional problem that has a distributed aspect to it. At the same time, x-
dependent controls, the natural choice for the mathematical structure, are not a
realistic description of the underlying medical problem. The different effects that
drugs have on cells of trait x are modelled by means of the functions ϕi(x), but
drug administration is open-loop based on information at the beginning of therapy,
i.e., ui = ui(t). In fact, for an optimal control problem of this type, it is not even
clear how necessary conditions for optimality look. It therefore makes sense to start
its analysis with finite-dimensional approximations.

2.2. Emergence of traits under cell density and mutations. It is one of the
main findings in the papers by Greene et al. [16, 25] that with time specific traits
emerge and become dominant. For the model described by equation (2), and also
assuming a constant concentration c(t) ≡ c, if the function ∆(x) = r(x)− ϕ(x)c−
µ(x) attains its maximum M in a finite number of points xi, i = 1, . . . , k, then
(and making some continuity and positivity assumptions) the total number of cells

N(t) grows exponentially and the relative proportions of traits, ρ(t, x) = n(t,x)
N(t) ,

has a well-defined steady-state distribution given by a weighted average of Dirac
δ-distributions at the traits with the fastest net growth rates [16, 25].
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Figure 1. Schematic illustration of the distribution of traits
around dominant steady states.

As mutations are included into the modeling, these distributions ‘smear’ and
have a larger support around these traits, but otherwise the same qualitative picture
arises (see Fig. 1). Mutations are described through transition probabilities from
one trait to another. For x, y ∈ [0, 1], let p(x|y) denote the transition density of a
change from trait y into trait x. Thus, for every y ∈ [0, 1], p(·|y) is a nonnegative
function that integrates to 1. For example, if one wants to capture the effect that
small mutations are more likely than others, then a modified Gaussian kernel of the
form

p(x|y) = k(y) exp

(
−1

2

(
x− y
σ

)2
)

with σ the standard deviation and k(y) a normalizing constant is adequate. If,
for simplicity, it is also assumed that at a given instant in time a fixed fraction θ,
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θ ∈ (0, 1), of cells mutate, then this reduces the reproduction rate r by θ and the
total flow of all mutating cells cells is given by∫ 1

0

p(x|y)r(y)θn(t, y)dy.

Hence the dynamics (4) with mutations takes the form

∂n

∂t
(t, x) = {r(x) (1− θ)− ϕ(x)c(t)−G(N(t))µ(x)}n(t, x)

+θ

∫ 1

0

p(x|y)r(y)n(t, y)dy. (8)

The net effect of mutations on the growth of the total population thus is zero and
the total growth is still described by the same differential equation as before,

dN

dt
(t) =

∫ 1

0

{r(x) (1− θ)− ϕ(x)c(t)−G(N(t))µ(x)}n(t, x)dx

+

∫ 1

0

(
θ

∫ 1

0

p(x|y)r(y)n(t, y)dy

)
dx (9)

In particular, the total tumor population remains bounded.
Summarizing the results of Lorz et al. [35, 36] and Greene et al. [16, 25], in

the long run (steady-state), specific traits, possibly with small variations, emerge
and become dominant as an evolutionary response to different rates for growth and
apoptosis, increasing cell densities and mutations. In the presence of mutations,
this occurs regardless of whether these traits were present originally or not.

3. Optimal control for a mathematical model of sensitive and resistant
populations. In view of the mathematically difficult problem formulation for the
optimal control problem with a continuum of traits, it therefore makes sense to
look at finite-dimensional approximations and, in fact, even models with a small
number of compartments become illustrative. In the most extreme simplification,
one can just consider “sensitive” and “resistant” populations (e.g., see [19, 29]).
Mathematically, however, we only assume that the ‘resistant’ population has a lower
sensitivity to the chemotherapeutic agent that is being applied, not necessarily that
there is none. We denote the populations of sensitive cells (total numbers of cells
or volume) by S and the population of resistant cells by R. In the model, it is
allowed that sensitive cells mutate into resistant ones, but also that resistant ones
resensitize. The latter fact is well-documented in the literature on cancer as acquired
drug resistance can be lost in a drug free environment (e.g., see [17, 22]) whereas
naturally such transitions are less likely or do not occur in case of intrinsic drug
resistance. Thus a simple 2-compartment model for the evolution of sensitive and
resistant populations takes the following form

Ṡ = (r1 − θ1 − ϕ1c)S + θ2R, S(0) = S0, (10)

Ṙ = θ1S + (r2 − θ2 − ϕ2c)R, R(0) = R0, (11)

where c denotes the concentration of the chemotherapeutic agent. The constants r1

and r2 are the replication rates of the respective populations and θ1 and θ2 describe
the exchange between the two subpopulations. Here, as a simplifying assumption,
the apoptosis rate has been set to zero, i.e., increasing cell densities are not included
in the model. Cell kill is modelled using the standard linear log-kill hypothesis and
the coefficients ϕ1 and ϕ2 define the effects of the drug on the two subpopulations
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(pharmacodynamics). According to the labeling of the populations, we assume that
ϕ1 > ϕ2 ≥ 0 with the case ϕ2 = 0 corresponding to the situation of a fully resistant
second subpopulation. The concentration c may either be considered as the control
in the system [29] or it may be modelled as a third state variable by including a
pharmacokinetic model. In the simplest case, as above, this is given by the standard
model of exponential growth and decay,

ċ = −kc+ u, c(0) = 0, (12)

with k = ln 2
T and T the half-life of the agent.

3.1. Formulation as optimal control problem and numerical analysis. We
consider the problem to minimize the tumor burden over a fixed therapy interval
[0, T ] through administration of chemotherapy. Toxicity of the treatment is taken

into account indirectly by including the integral
∫ T

0
u(t)dt, which denotes the total

dose of drugs given over the interval [0, T ], as a penalty term in the objective. Under
the log-kill hypothesis the damage done to cells is proportional to the concentration
of drugs given and thus this term represents the toxic side effects of treatment. We
consider the following optimal control problem:

[C]: For a fixed therapy horizon [0, T ], minimize the objective

min J = α1S(T ) + α2R(T ) +

∫ T

0

(β1S(t) + β2R(t) + u(t)) dt (13)

over all Lebesgue-measurable functions u : [0, T ] → [0, umax] subject to the
dynamics (10)-(12).

In the objective, α1, α2, β1 and β2 are positive coefficients that represent weights;
umax denotes the maximum drug dose rate. It is convenient to introduce a compact
notation for the state, but we wish to separate the concentration c of the chemother-
apeutic agent from the vector denoting the cancer cells. Let z = (S,R)T and denote
by A and B the matrices

A =

(
r1 − θ1 θ2

θ1 r2 − θ2

)
and B =

(
−ϕ1 0

0 −ϕ2

)
,

so that equations (10) and (11) take the bilinear matrix form

ż = (A+ cB) z. (14)

We also write α = (α1, α2) and β = (β1, β2) for the row vectors in the objective
which then takes the form

J = αz(T ) +

∫ T

0

(βz(t) + u(t)) dt. (15)

First order necessary conditions for optimality are given by the Pontryagin max-
imum principle [43]. (For some more recent references on optimal control, see
[7, 8, 34, 44]). Essentially, these conditions assert that if u∗ : [0, T ]→ [0, umax] is an
optimal control with corresponding trajectory (z∗, c∗), then there exist multipliers

λ = (λ1, λ2) : [0, T ] →
(
R2
)∗

(which we write as a row vector) and µ : [0, T ] → R
that satisfy the adjoint equations

λ̇ = −∂H
∂z

= −β − λ (A+ c∗B) , λ(T ) = α, (16)

µ̇ = −∂H
∂c

= −λBz∗ + kµ, µ(T ) = 0, (17)
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and are such that the optimal control u∗ minimizes the Hamiltonian function H
defined by

H = H(λ, µ, z, c, u) = βz + u+ λ (A+ cB) z + µ (−kc+ u) , (18)

in u over the control set [0, umax] along (λ(t), µ(t), z∗(t), c∗(t)).
Any controlled trajectory ((z, c), u) for which there exist multipliers λ and µ such

that these conditions are satisfied, is called an extremal and the triple ((z, c), u, (λ,
µ)) is an extremal lift. Since the Hamiltonian H is linear in the control u, it is clear
that the minimization property gives us that

u∗(t) =

{
0 if Φ(t) > 0,

umax if Φ(t) < 0.
(19)

where Φ is the so-called switching function given by

Φ(t) = 1 + µ(t). (20)

Whenever the switching function does not vanish, optimal controls are given by
either full dose treatment or no treatment at all. However, optimal controls may
take values in the interior of the control set if Φ vanishes identically over some
open interval. Such controls are called singular while controls which only take
values in the boundary points of the control interval are called bang-bang controls.
Whenever Φ(τ) = 0 and Φ̇(τ) 6= 0, then the optimal control switches between umax

and 0 depending on the sign of the derivative, Φ̇(τ), which gives the switching
function its name. Optimal controls typically consist of concatenations of bang and
singular structures that need to determined through an analysis of the properties
of the switching function.

3.2. On the structure of optimal controls. Except for degenerate situations,
singular controls can be determined by differentiating the switching function in time
until the control u explicitly appears in the formula. It follows from general facts
of Lie algebra that this can only happen for the first time in an even numbered
derivative. If this is the 2k-th derivative, then the control is said to be of intrinsic
order k. (For details we refer the reader to [44]). It is then a necessary condition for
optimality for the minimization problem, the so-called generalized Legendre-Clebsch
condition [7, 44], that

(−1)k
∂

∂u

d2k

dt2k
∂H

∂u
(λ(t), µ(t), z∗(t), c∗(t), u∗(t)) = (−1)k

∂

∂u
Φ(2k)(t) ≥ 0. (21)

If this condition is violated, singular controls locally maximize the objective.
For the model considered here, because a linear pharmacokinetic model is in-

cluded for the drug actions, it can be shown that singular controls are of intrinsic
order 2 [31, 32] and a direct computation verifies that the strengthened Legendre-
Clebsch condition for optimality is satisfied. Specifically,

∂

∂u

d4

dt4
∂H

∂u
= −λ(t) [B, [A,B]] z(t) + βB2z(t) (22)

= (ϕ1 − ϕ2)
2

(λ2(t)θ1S(t) + λ1(t)θ2R(t)) +
(
β1ϕ

2
1S(t) + β2ϕ

2
2R(t)

)
> 0

where we use the facts that both the multipliers λ1 and λ2 and the states S and R
are positive [32]. We thus have the following result:

Proposition 1. [32] Singular controls are of order 2 and the Legendre-Clebsch
condition for minimality is satisfied.
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Further analysis of the derivatives of the switching function shows that optimal
controls necessarily are bang-bang if the fraction of sensitive cells is high. Specifi-
cally, the following result holds:

Proposition 2. [32] If the state (S,R) of the system lies in the set

BB =
{

(R,S) : ((ϕ1 − ϕ2) kθ2 − β2ϕ1ϕ2S(t))R(t) ≤ β1ϕ
2
1S(t)2

}
, (23)

then the corresponding optimal control is bang-bang with at most one switching from
full dose, u ≡ umax, to no dose, u ≡ 0. Especially this holds while the number of
sensitive cells exceeds the threshold

S ≥ ϕ1 − ϕ2

ϕ1ϕ2
k
θ2

β2
. (24)

If we choose the weights β1 and β2 in a way that makes the weighted populations
of sensitive and resistant cells comparable in size, say β1S ∼ β2R, then equation
(23) induces an approximately linear relation on S and R. In this case, it can be
concluded that optimal controls are bang-bang if the percentage of sensitive cells
lies above a certain threshold. As the proportion of sensitive cells decreases, lower
partial dose rates for the control become viable. In fact, this result points to the
following structure of controls as optimal: initially, as there is a high percentage of
sensitive cells, give full dose therapies. This simply represents the case of a high
tumor burden when immediate action becomes necessary. Later on, as the fraction
of sensitive cells diminishes, switch to lower dose rates determined by the singular
control. Note that we always have that µ(T ) = 0 at the end of the therapy interval
and thus the switching function is positive at the terminal time T . This implies that
optimal controls end with an interval when no drugs are given any more. Singular
controls are a viable alternative for the intermediate section between full and no
dose treatments.

Mathematically, however, a simple strategy of the form umax/using/0,

ũ(t) =

 umax for 0 ≤ t ≤ τ1,
using for τ1 < t ≤ τ2,

0 for τ2 < t ≤ T,
(25)

(consisting of full dose therapy followed by lowering the dose rates to the singular
control and a restperiod at the end), although intuitive, cannot be optimal for the
optimal control problem [C]. The reason lies in the fact that it is well-known in
optimal control theory (e.g., see [44]) that concatenations of constant controls with
singular controls of order 2 are not optimal. Indeed, optimal concatenations are ac-
complished by so-called chattering controls that switch between the extreme values
umax and 0 infinitely many times (the so-called Fuller or Zeno phenomenon [31]).
Clearly, for the underlying practical problem such concatenations are not feasible.
On the other hand, simple approximations of the optimal chattering sequences, such
as the intuitive sequence umax/using/0 generally do very well and often come close
to the optimal values (e.g., see [28]). Thus control strategies based on equation (25)
provide simple and generally excellent suboptimal approximations.

3.3. Numerical simulations of suboptimal approximations. We give some
examples of suboptimal control strategies that follow this structure and initially
give full dose treatment over an interval of length τ and then switch to the singular
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control for the rest of the therapy horizon, i.e., are of the form

uτ (t) =

 umax for 0 ≤ t ≤ τ,

using for τ < t ≤ T.
(26)

Mathematically, these controls represent simple heuristic approximations of what
the theory suggests to be the optimal structure. Similar types of protocols that fol-
low full dose therapy sessions with lower, reduced doses have been tested in medical
trials and are referred to as “chemo-switch” protocols in the medical literature [20].

The values for our numerical simulations are summarized in Table 1. These values
are only meant to illustrate the qualitative behavior of the system. As such we have
selected numbers from a reasonable range given the meaning of the variables and
parameters, but they are not based on medical data. Specifically, for the growth
rates of the sensitive and resistant compartment we picked r1 = 3.5 and r2 = 1
reflecting a significantly higher growth rate for the more sensitive compartment. For
the interchange between the compartments, we chose θ1 = 0.15 and θ2 = 0.02. This
corresponds to a situation where it is much more likely that sensitive cells become
resistant than it is that resistant cells resensitize. But this possibility is included
and matters for the structure of solutions. We are assuming that the cytotoxic
agent is able to kill a much larger fraction of the sensitive cells than of the resistant
population and chose ϕ1 = 5 and ϕ2 = 1. So we still have a positive, though much
lower cell kill for the population R in the model. For the chemotherapeutic agent
we have taken as example the pharmacokinetic data for Taxol which has a half-life
of 5.6 hours. If this is used to compute the clearance rate for the drug in days we
get the value k = 2.9706 shown in the table. But, once more, this is merely one
representative value. The maximum dose rate was set to umax = 10 which then
leads to a maximum concentration of cmax = umax

β = 3.366. As initial conditions

we chose a total tumor burden of 1010 cells and distributed the cells according to
the steady state proportions of the uncontrolled dynamics. These simply are the
limits for the solutions of the Riccati differential equation induced on the fraction
σ = S

S+R by the dynamics (e.g., see [45, Chapter 2]). Since the dynamics (10)-

(11) is linear in S and R, this value can be normalized. In the objective, and in
accordance with the normalization of the coefficient at the control to 1, we selected
the coefficients β1 and β2 equal to 10−10 so that the initial term β1S(0) + β2R(0)
is comparable to the highest dose rate. The therapy horizon for the simulations is
given by T = 21 or T = 42 and could be thought of as [days].

For these data, the initial condition lies in the region BB where optimal controls
are bang-bang. If the initial segment τ is too short, the lower dose rates are not able
to control the population size. While the sensitive population gets eradicated by the
subsequent administration of drugs, the resistant population simply takes over (top
row in Fig. 2). If the time τ is increased to τ = 1.75, both populations decrease
during administration of the singular dose rate. At the end of the initial MTD
session, the sensitive cancer cells have been reduced significantly, S1.75(τ) = 93153,
but there remains a sizable resistant population, R1.75(τ) = 5.112 · 107. Although
resensitization expressed by the coefficient θ2 is small, combined with the fact that
it is still assumed that the chemotherapeutic agent has some cytotoxic effect on the
less sensitive compartment, the much lower dose rates are then able to control the
cancer volume over the therapy interval (middle row in Fig. 2)). If the time τ is
increased to τ = 2, the sensitive population is almost eliminated (bottom row in
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parameters interpretation value
S0 initial condition of sensitive cells 9.4051× 109

R0 initial condition of resistant cells 0.5949× 109

r1 growth rate of sensitive population 3.5
r2 growth rate of resistant population 1
θ1 rate at which sensitive cells become resistant 0.15
θ2 rate at which resistant cells become resensitized 0.02
ϕ1 log-kill coefficient for sensitive population 5
ϕ2 log-kill coefficient for resistant population 1
k clearance rate of drug [Taxol] 2.9706

Table 1. Values for the initial data and parameters used in nu-
merical computations.
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Figure 2. Dose rates (left) for the control uτ defined by equation
(26) for τ = 1 (top row), τ = 1.75 (middle row) and τ = 2 (bottom
row), and corresponding time evolutions of the concentrations c
(middle) and the states S and R (right).

Fig. 2)). The residual numbers of cancer cells after the MTD session are given by
S2(τ) = 51145 and R2(τ) = 2.8244 · 107.

If a longer time horizon is considered, then the control which administers the
maximum dose for time τ = 1.75 and then switches to the singular control leads
to an increase in the resistant population later on. Figure 3 shows a comparison
of the strategies uτ for τ = 1.75 and τ = 2 over a time horizon of 42 days and
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Figure 3. Evolution of the states S and R if the therapy horizon
is extended to 42 days for the control strategies uτ for τ = 1.75
(left) and τ = 2 (right).

while the population of resistant cells starts to slowly increase after about T = 30,
for τ = 2 this does not happen. The reason lies in the overall growth rates for
the total cancer population. If we define the time-varying growth rate χ(t) for the

total cancer population C = S +R by Ċ(t)/C(t), then, with σ(t) = S(t)/C(t) and
ρ(t) = R(t)/C(t), we have that

χ(t) = (r1 − ϕ1c(t))σ(t) + (r2 − ϕ2c(t)) ρ(t). (27)

In the case τ = 2, the singular control and concentration actually reach a constant
steady-state and the instantaneous growth rate stabilizes at the negative value χ =
−0.4661. In the case τ = 1.75, however, while the growth rate at time T = 21 is
negative, χ(21) = −0.0299, the system does not reach a steady-state, but rather
increases over longer time intervals and we have that χ(42) = 0.0319 and even
χ(63) = 0.1063. In this case the resistant and thus also the total population will
eventually grow exponentially. This behavior, which is shown in Fig. 3, illustrates
the importance of the initial full dose segment.

4. Extensions of results to multiple compartments. Similar results are valid
when more, but still a small number of compartments, are considered. In fact, in [27]
a 3-compartment model was analyzed that distinguished three levels of chemother-
apeutic sensitivities, but allowed for transitions between all these compartments by
means of gene amplifications or other mutation type events. In this case, and differ-
ent from the results above, partial dose rates become an option for optimal controls
from the onset. However, for these results an important aspect is that exchanges
between the compartments are possible that make the overall dynamics resemble
the behavior and properties of an ergodic Markov chain.

Since there is a qualitatively different behavior in the form of solutions, it is of
interest to extend the analysis above to models with a large number of compart-
ments. Returning to the model formulation in Section 2, if one considers n distinct
traits and a single control u = u(t), and now writing N = (N1, . . . , Nn)T for the
state of the system (the numbers of cancer cells for the specified finite numbers of
traits), this leads to the following optimal control problem:

[Het-a]: with α, β and γ row vectors of positive weights, minimize

J = J(u) = αN(T ) +

∫ T

0

(βN(t) + γu(t)) dt (28)
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subject to the dynamics

Ṅi(t) =
{
ri − ciu(t)−G(N̄(t))µi

}
Ni(t), where N̄(t) =

1

n

n∑
i=1

Ni(t). (29)

We can write the dynamics in matrix notation in the form

Ṅ(t) =
{
R− Cu(t)−G(N̄(t))M

}
N(t)

where R, C and M are diagonal matrices. In principle, this is a standard, nonlinear
optimal control problem and generally such problems are difficult to solve if the
dimension is high. In this case, however, the dynamics has special structure since
all the matrices are diagonal and this simplifies the analysis. If one takes the weights
β in the objective (28) equal, β = β̄(1, . . . , 1), then singular controls can explicitly
be computed [49] as feedback functions (i.e., functions that only depend on the
states, but not on the multipliers),

using(t) =
β
(
R−G(N̄(t))M

)
N(t)

βCN(t)
. (30)

and they satisfy the Legendre-Clebsch necessary condition for optimality if the
function G is increasing and concave [49]. Interestingly, the singular control has the
property that it keeps the total population of cancer cells constant, i.e.,

d

dt

n∑
i=1

Ni(t) ≡ 0. (31)

This feature is illustrated in Figs. 4 and 5 where we show the behavior of the
system for controls that start with a full dose control over an initial interval [0, τ ]
and then switch to a singular control for the remaining period [τ, T ]. The graphs
shown in the figures give the result when this structure has been optimized over τ
for n = 21 traits. In the computations, the following functions were used in the
dynamics:

r(x) =
2

1.1 + 2x5
, ϕ(x) =

1

1 + x2
, µ(x) ≡ 0.50. (32)

These functions simply represent replication rates and chemotherapeutic sensitiv-
ities that decrease in x [16]. No pharmacokinetic model has been used in these
calculations, i.e., c = u. In each case, the weights in the objective favor the use
of the singular control and there are only short initial periods of full dose therapy.
In the first case, Fig. 4, the control is singular for almost all the interval and thus
the total population remains basically constant. While some of the traits decrease,
others increase and the panel at the bottom shows how the initial density, which
was chosen to be uniform, changes under the control. For the functions given in
(32) the sub-populations with highest x values are the ones that are diminished the
most albeit these have the lowest drug sensitivities. The reason lies in the fact that
these are also the slowest growing populations and the sensitivity to the drug is still
high enough to eradicate these sub-populations. The net balance is the worst for
x = 0.4 and this population grows the strongest, i.e., has the worst overall ther-
apy effect under this specific drug concentration. This example illustrates how the
balance between replication rate and cytotoxic activities of the drug at a specific
concentration interact to determine the dominant trait under treatment. Full dose
therapy leads to a reduction in all traits, but for this particular objective side ef-
fects are judged more severe and thus the control becomes singular. In the second
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Figure 4. An administration protocol which gives full dose until
time τ and then switches to the dose given by the singular control
over the interval [τ, 10] optimized over τ . The weights in the ob-
jective are chosen equal using ᾱ = β̄ = 1

21 and γ = 100. Shown are
the control (top, left), corresponding evolution of the total popu-

lation T =
∑21
i=1Ni(t) (top, right), evolution of the traits Ni(t)

for i = 1, . . . , 21 (middle) and a comparison of the initial density
n(0, x) ≡ 200

21 and the terminal density n(10, x) shown as red curve
(bottom).
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example, Fig. 5, the weight β in the Lagrangian term has been increased and thus
more emphasis is put on the tumor size during the interval. As a result, the value of
the singular control increases and, in fact, if β is increased beyond 15 the singular
control exceeds the preset upper limit and becomes inadmissible. Essentially, in
such a case the size of the tumor is the most important feature and the control
becomes identically 1, the preset full dose.

Generally, the weights α, β and γ are variables of choice that need to reflect
the underlying objectives of therapy balancing the need for tumor reduction with
controlling side effects. The examples shown here give but one facet of the overall
picture and are only intended to illustrate the effect that singular controls have in
keeping the total population constant and thus controlling the tumor size. Clearly,
in a practical case it may be difficult to obtain precise information about the func-
tions r(x), ϕ(x) and µ(x), but qualitative information of the type that certain traits
respond to one drug, but are resistant to another one, in principle can be incor-
porated and qualitative results about the structure of administration protocols are
the main objective of this research.

5. Discussion and conclusions. Over the last years, clonal heterogeneity has
been put on center stage as it is an important factor contributing to resistance to
anticancer treatments and, most importantly, targeted therapies [38]. It has even
been envisioned as the potential frontier to targeted therapies [47]. Here, using a
simple model with one sensitive and one resistant clone, it is shown that a strat-
egy that combines an initial MTD chemotherapy segment followed by metronomic
chemotherapy, also called chemo-switch, results in effective control of the tumor.
This approach has already been validated in vivo and in vitro [5, 37, 42].

The model presented in this paper can be developed further in various directions
to be made more realistic. These include, for instance, taking into account more
than two clones with different levels of resistance, different mechanisms of resistance
and more than one anticancer agent. Such a model has been formulated in problem
[Het]. Eventually, all components of the microenvironment, which includes the ves-
sels that form the tumor vasculature or immune cells, need to be integrated. (A first
attempt has been made in [26, 46].) The resulting optimal treatment is expected
to necessitate not only to adjust doses and schedules of one agent beyond what are
chemo-switch regimens, but to generate a more complex, evolving treatment that
anticipates and adjusts to evolutions of heterogenous clones. For the clinician this
might result in an approach that would comprise combinations of drugs relying on
an ever evolving mixture of the following therapeutic concepts: “dose effect”, “dose
intensity”, “adaptive therapy” and “metronomics”. This kind of unconventional
treatment would result in a seemingly chaotic therapy that is not reachable with
our current empirical approach. Combination of mathematics, biology and phar-
macology though computational pharmacology is mandatory to be able to design
such treatments [1, 4].
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[41] E. Pasquier, M. Kavallaris and N. André, Metronomic chemotherapy: New rationale for new

directions, Nature Reviews|Clinical Oncology, 7 (2010), 455–465.
[42] K. Pietras and D. Hanahan, A multi-targeted, metronomic and maximum tolerated dose

“chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit

in a mouse model of cancer, J. of Clinical Oncology, 23 (2005), 939–952.

[43] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathe-
matical Theory of Optimal Processes, Macmillan, New York, 1964.

[44] H. Schättler and U. Ledzewicz, Geometric Optimal Control: Theory, Methods and Examples,
Springer Verlag, 2012.

[45] H. Schättler and Ledzewicz, Optimal Control for Mathematical Models of Cancer Therapies,

Springer Publishing Co., New York, USA, 2015.
[46] H. Schättler, U. Ledzewicz and B. Amini, Dynamical properties of a minimally parametrized

mathematical model for metronomic chemotherapy, J. of Math. Biol., 72 (2016), 1255–1280.

[47] C. Swanton, Cancer evolution: The final frontier of precision medicine? Ann. Oncol., 25
2014), 549–551, http://www.ncbi.nlm.nih.gov/pubmed/24567514.

http://dx.doi.org/10.1158/0008-5472.CAN-13-1768
http://dx.doi.org/10.1158/0008-5472.CAN-13-1768
http://www.ams.org/mathscinet-getitem?mr=MR3394088&return=pdf
http://dx.doi.org/10.3934/mbe.2015.12.1257
http://dx.doi.org/10.3934/mbe.2015.12.1257
http://www.ams.org/mathscinet-getitem?mr=MR3301018&return=pdf
http://dx.doi.org/10.1007/s10440-014-9952-6
http://dx.doi.org/10.1007/s10440-014-9952-6
http://dx.doi.org/10.1007/978-3-642-12598-0_23
http://dx.doi.org/10.1007/978-3-642-12598-0_23
http://www.ams.org/mathscinet-getitem?mr=MR2172199&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2338438&return=pdf
http://dx.doi.org/10.1137/060665294
http://dx.doi.org/10.1137/060665294
http://www.ams.org/mathscinet-getitem?mr=MR2760917&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3215227&return=pdf
http://dx.doi.org/10.1142/S0218339014400014
http://www.ams.org/mathscinet-getitem?mr=MR3046266&return=pdf
http://dx.doi.org/10.3934/mbe.2013.10.803
http://dx.doi.org/10.3934/mbe.2013.10.803
http://www.ams.org/mathscinet-getitem?mr=MR2895149&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3021691&return=pdf
http://dx.doi.org/10.1051/m2an/2012031
http://dx.doi.org/10.1051/m2an/2012031
http://www.ams.org/mathscinet-getitem?mr=MR3303103&return=pdf
http://dx.doi.org/10.1007/s11538-014-0046-4
http://dx.doi.org/10.1007/s11538-014-0046-4
http://dx.doi.org/10.3389/fonc.2014.00076
http://dx.doi.org/10.3389/fonc.2014.00076
http://www.ncbi.nlm.nih.gov/pubmed/24782987
http://www.ncbi.nlm.nih.gov/pubmed/24782987
http://www.ncbi.nlm.nih.gov/pubmed/25584892
http://www.ncbi.nlm.nih.gov/pubmed/25584892
http://dx.doi.org/10.1038/nrclinonc.2010.82
http://dx.doi.org/10.1038/nrclinonc.2010.82
http://www.ams.org/mathscinet-getitem?mr=MR0186436&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2798273&return=pdf
http://dx.doi.org/10.1007/978-1-4614-3834-2
http://www.ams.org/mathscinet-getitem?mr=MR3408272&return=pdf
http://dx.doi.org/10.1007/978-1-4939-2972-6
http://www.ams.org/mathscinet-getitem?mr=MR3464202&return=pdf
http://dx.doi.org/10.1007/s00285-015-0907-y
http://dx.doi.org/10.1007/s00285-015-0907-y
http://dx.doi.org/10.1093/annonc/mdu005
http://www.ncbi.nlm.nih.gov/pubmed/24567514


DRUG RESISTANCE AND METRONOMIC CHEMOTHERAPY 235

[48] A. Swierniak and J. Smieja, Cancer chemotherapy optimization under evolving drug resis-
tance, Nonlinear Analysis, 47 (2000), 375–386.

[49] S. Wang and H. Schättler, Optimal control of a mathematical model for cancer chemotherapy

under tumor heterogeneity, Math. Biosci. and Engr. - MBE, 13 (2016), 1223–1240.
[50] J. Wares, J. Crivelli, C. Yun, I. Choi, J. Gevertz and P. Kim, Treatment strategies for com-

bining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Math.
Biosci. and Engr. - MBE , 12 (2015), 1237–1256.

[51] S. D. Weitman, E. Glatstein and B. A. Kamen, Back to the basics: the importance of con-

centration × time in oncology, J. of Clinical Oncology, 11 (1993), 820–821.

Received December 01, 2015; Accepted June 30, 2016.

E-mail address: uledzew@siue.edu

E-mail address: swang35@wustl.edu

E-mail address: hms@wustl.edu

E-mail address: nicolas.andre@ap-hm.fr

E-mail address: MARIE-AMELIE.HENG@ap-hm.fr

E-mail address: EPasquier@ccia.org.au

http://www.ams.org/mathscinet-getitem?mr=MR1970658&return=pdf
http://dx.doi.org/10.1016/S0362-546X(01)00184-5
http://dx.doi.org/10.1016/S0362-546X(01)00184-5
http://dx.doi.org/10.3934/mbe.2016040
http://dx.doi.org/10.3934/mbe.2016040
http://www.ams.org/mathscinet-getitem?mr=MR3394087&return=pdf
http://dx.doi.org/10.3934/mbe.2015.12.1237
http://dx.doi.org/10.3934/mbe.2015.12.1237
mailto:uledzew@siue.edu
mailto:swang35@wustl.edu
mailto:hms@wustl.edu
mailto:nicolas.andre@ap-hm.fr
mailto:MARIE-AMELIE.HENG@ap-hm.fr
mailto:EPasquier@ccia.org.au

	1. Introduction
	2. Optimal control for chemotherapy under tumor heterogeneity
	2.1. An optimal control problem with a continuum of traits
	2.2. Emergence of traits under cell density and mutations

	3. Optimal control for a mathematical model of sensitive and resistant populations
	3.1. Formulation as optimal control problem and numerical analysis
	3.2. On the structure of optimal controls
	3.3. Numerical simulations of suboptimal approximations

	4. Extensions of results to multiple compartments
	5. Discussion and conclusions
	Acknowledgments
	REFERENCES

