On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients

  • Received: 01 January 2013 Accepted: 29 June 2018 Published: 01 March 2014
  • MSC : Primary: 93C15, 92D30, 93B07, 93B30; Secondary: 93C41, 92C60.

  • The aim of this paper is to give a method for the estimation of total parasite burden of the patient and the rate of infection in a malaria's intra-host model by using control theory tools. More precisely, we use an auxiliary system, called observer or estimator, whose solutions tend exponentially to those of the original model. This observer uses only the available measurable data, namely, the values of peripheral infected erythrocytes. It provides estimates of the sequestered infected erythrocytes, that cannot be measured by clinical methods. Therefore this method allows to estimate the total parasite burden within a malaria patient. Moreover, our constructed observer does not use the uncertain infection rate parameter $\beta$. In fact, we derive a simple method to estimate this parameter $\beta$.We apply this estimation method using real data that have been collected when malaria was used as therapy for neurosyphilis by the US Public Health Service.

    Citation: Derdei Bichara, Nathalie Cozic, Abderrahman Iggidr. On the estimation of sequestered infected erythrocytes in Plasmodium falciparum malaria patients[J]. Mathematical Biosciences and Engineering, 2014, 11(4): 741-759. doi: 10.3934/mbe.2014.11.741

    Related Papers:

    [1] Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao . A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences and Engineering, 2012, 9(3): 647-662. doi: 10.3934/mbe.2012.9.647
    [2] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [3] A. D. Al Agha, A. M. Elaiw . Global dynamics of SARS-CoV-2/malaria model with antibody immune response. Mathematical Biosciences and Engineering, 2022, 19(8): 8380-8410. doi: 10.3934/mbe.2022390
    [4] Joan Ponce, Horst R. Thieme . Can infectious diseases eradicate host species? The effect of infection-age structure. Mathematical Biosciences and Engineering, 2023, 20(10): 18717-18760. doi: 10.3934/mbe.2023830
    [5] Yanxia Dang, Zhipeng Qiu, Xuezhi Li . Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences and Engineering, 2017, 14(4): 901-931. doi: 10.3934/mbe.2017048
    [6] Yue Deng, Siming Xing, Meixia Zhu, Jinzhi Lei . Impact of insufficient detection in COVID-19 outbreaks. Mathematical Biosciences and Engineering, 2021, 18(6): 9727-9742. doi: 10.3934/mbe.2021476
    [7] Junyuan Yang, Rui Xu, Xiaofeng Luo . Dynamical analysis of an age-structured multi-group SIVS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(2): 636-666. doi: 10.3934/mbe.2019031
    [8] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [9] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289
    [10] Yanfeng Liang, David Greenhalgh . Estimation of the expected number of cases of microcephaly in Brazil as a result of Zika. Mathematical Biosciences and Engineering, 2019, 16(6): 8217-8242. doi: 10.3934/mbe.2019416
  • The aim of this paper is to give a method for the estimation of total parasite burden of the patient and the rate of infection in a malaria's intra-host model by using control theory tools. More precisely, we use an auxiliary system, called observer or estimator, whose solutions tend exponentially to those of the original model. This observer uses only the available measurable data, namely, the values of peripheral infected erythrocytes. It provides estimates of the sequestered infected erythrocytes, that cannot be measured by clinical methods. Therefore this method allows to estimate the total parasite burden within a malaria patient. Moreover, our constructed observer does not use the uncertain infection rate parameter $\beta$. In fact, we derive a simple method to estimate this parameter $\beta$.We apply this estimation method using real data that have been collected when malaria was used as therapy for neurosyphilis by the US Public Health Service.


    [1] Parasitology, 99 (1989), S59-S79.
    [2] Am. J. Trop. Med. Hyg., 61 (1999), 36-43.
    [3] T. Roy. Soc. Trop. Med. H., 95 (2001), 497-501.
    [4] Parasitology, 117 (1998), 97-105.
    [5] Parasitology, 117 (1998), 409-410.
    [6] Parasitology, 110 (1995), 115-122.
    [7] Proc. Natl. Acad. Sci. USA., 95 (1998), 7620-7624.
    [8] J. Theor. Biol., 217 (2002), 137-148.
    [9] Parasitology, 113 (1996), 25-38.
    [10] IEEE Trans. Automat. Control, 37 (1992), 871-875.
    [11] IEEE Trans. Automat. Control, 39 (1994), 1338-1341.
    [12] SIAM J. Appl. Math., 67 (2006), 260-278.
    [13] Proc. Natl. Acad. Sci. USA., 88 (1991), 5111-5113.
    [14] Am. J. Trop. Med. Hyg., 61 (1999), 367-374.
    [15] J. Theor. Biol., 198 (1999), 549-566.
    [16] Proc. Natl. Acad. Sci. USA., 101 (2004), 9161-9166.
    [17] Parassitologia, 41 (2000), 221-231.
    [18] T. Roy. Soc. Trop. Med. H., 96 (2002), 205-209.
    [19] Parasitology, 131 (2005), 449-458.
    [20] Proc. Natl. Acad. Sci. USA., 100 (2003), 3473-3478.
    [21] Parasitol. Today., 12 (1996), 74-79.
  • This article has been cited by:

    1. Kwassi H. Degue, Denis Efimov, Abderrahman Iggidr, 2016, Interval estimation of sequestered infected erythrocytes in malaria patients, 978-1-5090-2591-6, 1141, 10.1109/ECC.2016.7810443
    2. Kwassi H. Degue, Jerome Le Ny, Estimation and outbreak detection with interval observers for uncertain discrete-time SEIR epidemic models, 2020, 93, 0020-7179, 2707, 10.1080/00207179.2019.1643492
    3. Pierre-Alexandre Bliman, Bettina D’Avila Barros, 2017, Chapter 3, 978-3-319-54210-2, 31, 10.1007/978-3-319-54211-9_3
    4. A. Iggidr, M. O. Souza, State estimators for some epidemiological systems, 2019, 78, 0303-6812, 225, 10.1007/s00285-018-1273-3
    5. Kwassi H. Degue, Jerome Le Ny, 2018, An Interval Observer for Discrete-Time SEIR Epidemic Models, 978-1-5386-5428-6, 5934, 10.23919/ACC.2018.8431758
    6. Derdei M. Bichara, Aboudramane Guiro, Abderrahman Iggidr, Diene Ngom, State and parameter estimation for a class of schistosomiasis models, 2019, 315, 00255564, 108226, 10.1016/j.mbs.2019.108226
    7. David Jaurès Fotsa-Mbogne, Improvement of disease dynamics monitoring through systematic screening and patchy structure: application to Neissera Meningitidis, 2021, 40, 2238-3603, 10.1007/s40314-021-01417-6
    8. M. S. Vinogradova, S. B. Tkachev, O. S. Tkacheva, Using an Observer in a Sliding Mode for Modeling Antiangiogenic Therapy, 2019, 2412-5911, 52, 10.24108/mathm.0618.0000165
    9. Kwassi H. Degue, Denis Efimov, Abderrahman Iggidr, Interval observer design for sequestered erythrocytes concentration estimation in severe malaria patients, 2021, 58, 09473580, 399, 10.1016/j.ejcon.2020.08.012
    10. S. Bowong, L. Mountaga, A. Bah, J. J. Tewa, J. Kurths, Parameter and state estimation in aNeisseria meningitidismodel: A study case of Niger, 2016, 26, 1054-1500, 123115, 10.1063/1.4971783
    11. Awais Khan, Xiaoshan Bai, Muhammad Ilyas, Arshad Rauf, Wei Xie, Peiguang Yan, Bo Zhang, Design and Application of an Interval Estimator for Nonlinear Discrete-Time SEIR Epidemic Models, 2022, 6, 2504-3110, 213, 10.3390/fractalfract6040213
    12. D. Bouhadjra, A. Alessandri, P. Bagnerini, A. Zemouche, 2022, A High-Gain Observer for Stage-Structured Susceptible-Infectious Epidemic Model with Linear Incidence Rate, 978-1-6654-5196-3, 1336, 10.23919/ACC53348.2022.9867230
    13. D. Bichara, A. Iggidr, M. Oumoun, A. Rapaport, G. Sallet, Identifiability and Observability via decoupled variables: Application to a malaria intra-host model, 2023, 56, 24058963, 576, 10.1016/j.ifacol.2023.10.1629
    14. F. Hamelin, A. Iggidr, A. Rapaport, G. Sallet, M. Souza, About the identifiability and observability of the SIR epidemic model with quarantine, 2023, 56, 24058963, 4025, 10.1016/j.ifacol.2023.10.1384
    15. Nik Cunniffe, Frédéric Hamelin, Abderrahman Iggidr, Alain Rapaport, Gauthier Sallet, 2024, Chapter 2, 978-981-97-2538-0, 9, 10.1007/978-981-97-2539-7_2
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2813) PDF downloads(481) Cited by(15)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog