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Abstract. The aim of this paper is to give a method for the estimation of total

parasite burden of the patient and the rate of infection in a malaria’s intra-host
model by using control theory tools. More precisely, we use an auxiliary system,

called observer or estimator, whose solutions tend exponentially to those of

the original model. This observer uses only the available measurable data,
namely, the values of peripheral infected erythrocytes. It provides estimates

of the sequestered infected erythrocytes, that cannot be measured by clinical
methods. Therefore this method allows to estimate the total parasite burden

within a malaria patient. Moreover, our constructed observer does not use the

uncertain infection rate parameter β. In fact, we derive a simple method to
estimate this parameter β. We apply this estimation method using real data

that have been collected when malaria was used as therapy for neurosyphilis

by the US Public Health Service.

1. Introduction. Malaria is a disease that causes at least one million deaths
around the world each year, with ninety per cent among African children. the most
dangerous type of malaria is caused by the most virulent species of the Plasmodium
parasite: Plasmodium falciparum. Intra-host models describe the dynamics of the
interaction of parasites (viruses, bacteria, protozoans, ...) within the host. These
models have been used to understand the population dynamics and evolution of
Plasmodium falciparum in the host. An abundant literature has been dedicated to
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malaria’s intra-host models, one can see for instance [1, 5, 12, 14, 15] and references
therein. A review of some models has been given in [17]. Most of these papers are,
in the whole, related to the seminal Anderson, May and Gupta’s model [1] which is
the 3 dimensional system:

ẋ = Λ− µxx− βxm,
ẏ = βxm− µyy,
ṁ = rµyy − µmm− βxm,

(1)

where x is the concentration of uninfected erythrocytes in the blood, y is the con-
centration of infected erythrocytes, and m the concentration of free merozoites.
Parameters µx, µy and µm are the death rates of the uninfected erythrocytes, in-
fected parasites and free merozoites respectively. The parameter β is the contact
rate between erythrocytes and merozoites. Uninfected blood cells are recruited at a
constant rate Λ from the bone marrow and have a natural life-expectancy of 1/µx×
days. Death of an infected erythrocyte results in the release of an average number
of r merozoites. Free merozoites die or successfully invade a healthy erythrocyte.
For the epidemiology of malaria, we refer to [1, 21].

As we can see in (1), the dynamics of the infected erythrocytes are described
by one differential equation. However, experimental analysis has shown that the
dynamics of Plasmodium falciparum might change according to its “age”, i.e., the
stage of its life cycle. Hence, a model, where the dynamics of the healthy cells are
coupled with an age-structured model for the infected cells and the dynamics of free
merozoites, has been considered [12, 5]:

ẋ = Λ− µx x− β xm,
ẏ1 = β xm− (γ1 + µ1) y1,

ẏ2 = γ1 y1 − (γ2 + µ2) y2,
...

ẏn = γn−1 yn−1 − (γn + µn) yn,

ṁ = r γn yn − µmm− β xm.

(2)

One of the characteristics of Plasmodium falciparum is sequestration. To explain,
let us give a brief description of the Plasmodium life cycle. The cycle begins when
the parasite enters the human body through the bite of an infected mosquito, after
which it migrates to and multiplies within the liver. Then the free forms (mero-
zoites) resulting from this multiplication are able to invade the red blood cells (ery-
throcytes). Erythrocytes which are infected, mature during the erythrocytic cycle.
At roughly the middle stage of trophozoite development (24 hours), molecules on
the surface of infected erythrocytes link to receptors of endothelial cells. This bind
has the effect of holding infected erythrocytes within vessels of organs (such as the
brain), where they remain until the rupture of the erythrocyte and the release of
merozoites. This period of attachment is called sequestration and during it, the
infected erythrocytes are not detectable in the blood flow, they are “sequestered”.
Also it is widely accepted that antimalarial drugs act preferentially on different
stage of parasite development [7, 8].

In practice, to know a patient’s stage of infection, the total parasite concentration∑n
i=1 yi in the bloodstream is needed. However, only the peripheral infected ery-

throcytes (young parasites y1 + y2 + . . . yk, for some k < n), also called circulating,
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can be observed (seen on peripheral blood smears) and the other ones (sequestered:
yk+1, . . . yn) are hidden in some organs like brain and heart, and cannot be observed.
There is no clinical method of measuring the sequestered infected cells directly.

All parameters in (2) can be estimated by biological considerations, except the
parameter β which is the Red Blood Cells (RBC)’s rate of infection. The rate of
infection is generally an unknown in epidemiology models.

The estimation of sequestered parasite population has been a challenge for the
biologist and modeler, with many authors [8, 7, 19] having studied this problem.
In this paper, we propose a different and simple method to estimate the total
parasite concentration from the measured circulating parasites and we show how
the parameter β can be estimated. To this end, we use some tools from control
theory. More precisely, we built an observer, i.e: an auxiliary dynamical system
whose states tend exponentially to the states of the original system (2). Moreover,
this auxiliary system does not depend on the badly known parameter β. The main
idea here is to consider the infection term βxm as an unknown input and to use
the theory of observers for systems with unknown inputs [10, 11] to provide the
dynamical estimates.

2. Dynamical estimation of the hidden parasitized erythrocytes. The ex-
act number of stages of parasitized erythrocytes is unknown but according to [4]
there are five main stages defined by simple morphology: young ring, old ring,
trophozoite, early schizont and finally late schizont. So we suppose that the par-
asitized erythrocytes population within the host is divided in 5 different stages:
y1, y2, y3, y4, y5. The two first stages correspond to the concentration of free
circulating parasitized erythrocytes and the three last stages correspond to the se-
questered ones. Let x be the concentration of healthy cells, and m the concentration
of merozoites. The healthy cells x are produced by a constant recruitment Λ from
the thymus and they become infected by an effective contact with a merozoite m. At
the late stage of infected cells, the erythrocyte ruptures and releases r merozoites.
The model that we consider has a seven dimensional state space, given by

ẋ = Λ− µx x− β xm,

ẏ1 = β xm− (γ1 + µ1) y1,

ẏ2 = γ1 y1 − (γ2 + µ2) y2,

...

ẏ5 = γ4 y4 − (γ5 + µ5) y5,

ṁ = r γ5 y5 − µmm− β xm.

(3)

The different parameters of this model are defined as follows:

• Λ : Recruitment of the healthy red blood cells (RBC).
• β : Rate of infection of RBC by merozoites.
• µx : Natural death rate of healthy cells.
• µi : Natural death rate of i-th stage of infected cells.
• γi : Transition rate from i-th stage to (i+ 1)-th stage of infected cells.
• r : Number of merozoites released by the late stage of infected cells.
• µm : Natural death rate of merozoites.
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As suggested in [4], we suppose that we can measure the circulating parasitaemia,
i.e: y1 + y2 and we want to find an estimate of the sequestered parasitaemia, y3 +
y4 + y5. Here, we use some classical notations from control theory. Let z(t) be the
state at time t of the system (3), i.e., z = (x, y1, . . . , y5 ,m) ∈ R7. The measurable
output of system (3) will be denoted by Y. Here, the measurable output corresponds
to the concentration of the circulating parasitized erythrocytes, and hence we have
Y(t) = y1(t) + y2(t). System (3) can then be written as:

ż = Az + β xm E + Λ e1, (4a)

Y = C z, (4b)

where z ∈ R7 and Y ∈ R are the state vector and the measurable output, respec-
tively. The matrices A, C, E and e1 are defined as follows:

A =



−µx 0 0 0 0 0 0

0 −µ1 − γ1 0 0 0 0 0

0 γ1 −µ2 − γ2 0 0 0 0

0 0 γ2 −µ3 − γ3 0 0 0

0 0 0 γ3 −µ4 − γ4 0 0

0 0 0 0 γ4 −µ5 − γ5 0

0 0 0 0 0 rγ5 −µm


,

E =



−1

1

0

0

0

0

−1


, e1 =



1

0

0

0

0

0

0


, and C = (0, 1, 1, 0, 0, 0, 0).

The equation (4a) describes the dynamics of the system while equation (4b) gives
information about what is measured.

The problem we are interested in is: how to use the dynamical model (4a) to-
gether with the information provided by the measurements (4b) in order to get
estimates of the state variables that cannot be measured? A solution to this prob-
lem can be provided by what is called in Control Theory an observer or estimator.
An observer is an auxiliary dynamical system which uses the information Y(t) pro-
vided by the system and which produces an estimate ẑ(t) of the state z(t) such that
the estimation error ẑ(t) − z(t) tends exponentially fast to zero as time t goes to
infinity. An observer for system (4a-4b) will be of the form{

˙̂w(t) = f(ŵ(t),Y(t)),

ẑ(t) = g(w(t),Y(t)).
(5)

One has to find the functions f and g in such a way that the solutions ẑ(t) of (5)
and the solutions z(t) of (4a) satisfy for all initial conditions (ẑ(0), z(0)):

‖ẑ(t)− z(t)‖ ≤ exp(−λ t) ‖ẑ(0)− z(0)‖ for some positive real number λ.
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However, the construction of the observer (5) requires the knowledge of all the
parameters of the model. This is not the case for our system since the parameter
β is unknown. Therefore we are going to consider the term βxm appearing in the
system (4a) as an unknown input and we shall use the notation: d(t) = β x(t)m(t).
With this, system (4a) can be considered as a linear system with unknown input
d(t) and can be written: {

ż = Az + Λ e1 + d(t)E,

Y = C z.
(6)

Following the approach from [11], we shall construct an estimator (observer) for
system (6). The idea for the construction will become evident after the proof of
Theorem 2.1 below.

We define the matrix Ā by

Ā = (Id − E C)A

where Id denotes the identity matrix. For our system, we have

Ā =



−µx −µ1 −µ2 − γ2 0 0 0 0

0 −γ1 µ2 + γ2 0 0 0 0

0 γ1 −µ2 − γ2 0 0 0 0

0 0 γ2 −µ3 − γ3 0 0 0

0 0 0 γ3 −µ4 − γ4 0 0

0 0 0 0 γ4 −µ5 − γ5 0

0 −µ1 −µ2 − γ2 0 0 r γ5 −µm


.

It can be shown that the pair (Ā, C) is detectable which means that there exists a
column matrix

L = (l1, l2, . . . , l7)t ∈ R7

such that the matrix Ā−LC is Hurwitz, i.e., all its eigenvalues have a negative real
part.

We can now give our main result: we have all the ingredients to derive a method
to dynamically estimate the state z(t) of our system.

Theorem 2.1. An exponential observer for system (6) is given by

 ẇ(t) = (Ā− LC)w(t) +
(
L+ (Ā− LC)E

)
Y(t) + Λ e1,

ẑ(t) = w(t) + E Y(t).

(7)

This observer is inspired from [11].
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Proof. We prove that the estimation error e(t) = ẑ(t)−z(t) converges exponentially
towards zero. Indeed, we have

ė = ˙̂z − ż

= ẇ + E Ẏ − Āz − E Ẏ − Λe1

= (Ā− LC)w + {(L+ (Ā− LC)E}Y + Λe1 + E Ẏ − Āz − E Ẏ − Λe1

= (Ā− LC)w + {(L+ (Ā− LC)E}Y − Āz

= (Ā− LC)(ẑ − E Y) + {(L+ (Ā− LC)E}Y − Āz

= (Ā− LC)ẑ − (Ā− LC)E Y + LY + (Ā− LC)E Y − Āz

= (Ā− LC)ẑ + LCz − Āz

= (Ā− LC)(ẑ − z)

= (Ā− LC)e

This shows that ‖e(t)‖ → 0 with exponential convergence rate since all the eigen-
values of the matrix Ā− LC have negative real parts.

Remark 1. It is remarkable that the computation of the estimates ẑ(t) does not
depend on the parameter β. Moreover, the estimation method proposed in Theo-
rem 2.1 is valid for arbitrary number n of age-classes.

For our model with n = 5, we have

Ā− LC =

−µx −µ1 − l1 −µ2 − γ2 − l1 0 0 0 0

0 −γ1 − l2 µ2 + γ2 − l2 0 0 0 0

0 γ1 − l3 −µ2 − γ2 − l3 0 0 0 0

0 −l4 γ2 − l4 −µ3 − γ3 0 0 0

0 −l5 −l5 γ3 −µ4 − γ4 0 0

0 −l6 −l6 0 γ4 −µ5 − γ5 0

0 −µ1 − l7 −µ2 − γ2 − l7 0 0 r γ5 −µm


The eigenvalues of Ā − LC are: −µx, −(γ1 + γ2 + µ2), −(µ3 + γ3), −(µ4 + γ4),
−(µ5 + γ5), −µm, and −(l2 + l3). Therefore the matrix Ā− LC is stable provided
that l2 + l3 > 0. Since the eigenvalues of Ā− LC do not depend on l1 nor on li for
i = 4, ..7, we simply choose l1 = l4 = l5 = l6 = l7 = 0. The eigenvalues −(l2 + l3)
and −(γ1 + γ2 + µ2) come from the 3 × 3 upper left block, and it is somehow a
stroke of luck that they are so simple algebraically.
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Therefore the dynamical estimator (7) for n = 5 is given by

ẇ1 = Λ − µxw1 − µ1w2 − (µ2 + γ2)w3 + (µx − µ1)Y

ẇ2 = − (γ1 + l2)w2 + (µ2 + γ2 − l2)w3 − γ1 Y

ẇ3 = (γ1 − l3)w2 − (µ2 + γ2 + l3)w3 + γ1 Y

ẇ4 = γ2w3 − (µ3 + γ3)w4

ẇ5 = γ3w4 − (µ4 + γ4)w5

ẇ6 = γ4w5 − (µ5 + γ5)w6

ẇ7 = −µ1w2 − (µ2 + γ2)w3 + r γ5w6 − µmw7 + (µm − µ1)Y

ẑ1 = w1 − Y

ẑ2 = w2 + Y

ẑ3 = w3

ẑ4 = w4

ẑ5 = w5

ẑ6 = w6

ẑ7 = w7 − Y

(8)

Thanks to this observer, one can compute easily w(t) and then ẑ(t) which tends
exponentially fast to z(t). The estimates of respectively x(t), yi(t),m(t) are respec-
tively x̂(t) = ẑ1(t), ŷi(t) = ẑi+1(t) for i = 1, . . . 5, and m̂(t) = ẑ7(t).

Therefore one can get an estimate of the total parasite burden

5∑
i=1

yi(t). This

dynamical estimate is given by
5∑
i=1

ŷi(t) =

6∑
i=2

ẑi(t).

3. A method for the estimation of the rate of infection β. Let us consider
the dynamic of y1, we have ẏ1 = βxm− (γ1 + µ1) y1. By the variation of constants
method, we can write:

y1(t) = y1(t0)e−(γ1+µ1) (t−t0) + β

∫ t

t0

x(s)m(s)e(γ1+µ1) (s−t)ds

By replacing x(t), y1(t) and m(t) by their estimates x̂(t), ŷ1 and m̂(t) provided by
the estimator (8) , we have:

ŷ1(t) = ŷ1(t0)e−(γ1+µ1) (t−t0) + β̃

∫ t

t0

x̂(s)m̂(s)e(γ1+µ1) (s−t)ds
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Then

ŷ1(t)e(γ1+µ1) t − ŷ1(t0)e(γ1+µ1) t0 = β̃

∫ t

t0

x̂(s)m̂(s)e(γ1+µ1) sds (9)

Let tf be the time after which the measured peripheral parasitaemia Y becomes
practically zero. We discretize the interval [t0, tfinal] in [ti, ti+1] and we write the
relation (9) for each interval [ti, ti+1] to obtain

ŷ1(ti+1)e(γ1+µ1) ti+1 − ŷ1(ti)e
(γ1+µ1) ti = β̃

∫ ti+1

ti

x̂(s)m̂(s)e(γ1+µ1) sds (10)

For each i, let

Ui = ŷ1(ti+1)e(γ1+µ1) ti+1 − ŷ1(ti)e
(γ1+µ1) ti , and Vi =

∫ ti+1

ti

x̂(s)m̂(s)e(γ1+µ1) sds.

By numerical integration, we can compute, for each i, Ui and Vi. Thus, (10) can
written as:

U = β̃V

where U and V are vectors of appropriate dimension with Ui and Vi as components
of U and V respectively. Hence, by a linear regression, we can obtain β̃ which is an
estimate of β.

4. Illustration using malariatherapy data.

4.1. Estimation of the numbers of sequestered infected erythrocytes. In
this section we show how our method to estimate the total parasitaemia from the
peripheral infected cells that are measured can be applied. By peripheral para-
sitaemia, we refer the density of parasites in the blood. The measured peripheral
parasitaemia are taken from data collected when malaria was used as therapy for
neurosyphilis by the US Public Health Service at the National Institutes of Health
laboratories in Columbia, South Carolina and Milledgeville, Georgia [2]. Patients
were inoculated through mosquito bite or infected blood [2, 3]. Those data have
been successfully used by many authors [2, 3, 6, 18] for different purposes concerning
the Plasmodium falciparum parasite.

To apply our total parasitaemia estimation method, we choose data of four pa-
tients named S1204, S1050, G221, and G54. These patients have been studied in
[3] for the following reasons: they do not have any of the following features:

• (i) treatment with drugs reported to affect gametocytes (chlorguanide, pyri-
methamine, primaquine) or unknown drugs;

• (ii) super-inoculation with any malaria parasite in the course of the infection;
• (iii) parasitological status on the day before onset of curative treatment posi-

tive or uncertain;
• (iv) gametocyte counts exceeding 100 µl (otherwise a reliable estimation of

parameters would have been impossible with the current model);
• (iv) inoculation of a rarely used strain.

Those particular patients are relevant to our study because those patients have
not taken treatment with drugs reported to affect gametocytes [3] and then satisfy
the assumption of low mortality rates for peripheral erythrocytes that we make
here. This assumption has also been used in [4].

It remains to pick the numerical values for different parameters. Among param-
eters in (3), some of them are known or at least widely accepted. However, the
infection rate β is unknown or hardly known, so our method here allows us to study
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the system without explicitly using β. With many classes, the most difficult task is
how to choose the transition rates [4, 8] with the condition that the sum of the stage
waiting times (life-span of parasitized erythrocytes) is 2 days. So, in this paper we
use the transition and death rates from [4] for patients without fever, i.e: at 37 ◦C.
Then we have:

i Transition γi Death rate µi

1 1.96 0

2 3.78 1.86

3 2.85 0

4 1.76 0.1

5 3.26 0

With these parameters, we will obtain

5∑
i=1

1

γi + µi
= 1.9101065 days, which is close

to 2 days.
In this paper, the unit of volume is micro-liter (µl) and the unit of time is day.

The life span of healthy erythrocytes is approximately 120 days [1, 6], so µx =
1

120
day−1.

For the constant recruitment, we proceed as in [16], where the authors fixed the

constant rate of erythrocytes’ production at
5× 106

120
cells µl−1day−1. This quantity

is obtained from the parasite-free equilibrium state: 0 = Λ− µxx0 where x0 is the
fixed concentration of RBC in adult males which is around 5× 106 RBCs per µl.

Merozoite’s life-span (
1

µm
) is, according to [1], about 20 minutes, so µm = 72

day−1.
The number of merozoites released in the blood is between 8-32. So, we take

here r = 16.
Recall that the choice l2 and/or l3 positive make the the matrix Ā−LC asymp-

totically stable. More precisely the spectrum of the matrix Ā− LC is:

Sp(Ā−LC) = {−l2− l3; −µx;−µm;−µ5−γ5; −µ4−γ4; −µ3−γ3; −γ1−µ2−γ2 }

For the simulations we take l2 = l3 = 5. Since all the eigenvalues of the matrix
Ā − LC are negative, the estimation error will tend exponentially to zero. For
a given precision ε > 0, it is possible to compute a minimal time tε satisfying
|ŷi(t)− yi(t)| < ε ‖ ẑ(0)− z(0) ‖ for all t > tε.

In practice, to determine tε, it is sufficient to run the estimator (8) with different
initial conditions and then the estimates become reliable from the time when the
various curves merge. An illustration for the total parasite burden is given in
Figure 1. For the patient S1204, tε ≈ 5 days.

Hereafter, we present the estimation results for the patient S1204 obtained by
the estimator (8) using the malariatherapy data. The total parasitaemia estimates
for the other patients are given in Figures 6,7,8.

The estimates of sequestered and total parasite population per mico-liter in pa-
tient S1204 are given in Table 1.
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total parasitaemia per micro-liter

t (days)
0

5000

10000

15000

20000

0 10 20 504030

Figure 1. Patient S1204: Estimates of the total burden with dif-
ferent initial conditions for the estimator (8): estimates become
accurate for t > 5 days.

t (days)

parasitaemia per micro-liter

0

20000

40000

60000

80000

100000

0 50 100

Figure 2. Patient S1204: Measure (data) of peripheral para-
sitaemia (solid line), estimated sequestred parasitaemia (dashed
line), and estimated total parasitaemia (dotted line).
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Time
in days

Peripheral
parasitaemia/µl

(data)

Estimated
sequestered

parasitaemia/µl

Estimated total
parasitaemia/µl

5 5811 22727 28538

10 180 9419 9599

15 0 3 3

20 9 3 12

25 0 1 1

30 0 1 1

35 340 248 588

40 25696 50217 75913

45 336 2359 2695

50 7660 4931 12591

55 12900 10809 23709

60 7100 9792 16892

65 1420 5123 6543

70 180 841 1021

75 7830 6547 14377

80 20 104 124

85 580 2173 2753

90 560 322 882

95 3130 5232 8362

100 950 1571 2521

Table 1. Estimates delivered by the estimator (8)

4.2. Partial synchrony. One of the most important feature of malaria is the syn-
chronous development of the parasite within the host, i.e. all of the infected RBCs
(rings, trophozoites, shizontes) are about the same during the development of the
cycle. This synchrony leads to simultaneous eruption of all mature schizontes, which
explains the periodic fevers in human malaria [4, 13]. According to [20], synchro-
nization in Plasmodium falciparum is only partial, i.e: parasiteamia often shows
chaotic fluctuations on top of periodic behavior. This is confirmed by the malar-
iatherapy patients considered in this paper. This can be seen on Fig. 6 for the
patient G54: on the interval of (0,10), there are four main peaks of total para-
siteamia. A high synchrony would suggest five peaks. The same remark is valid for
the patients S1204 on Fig. 1 and S1050 on Fig. 7. For the patient G221, a closer
look of the parasiteamia on the interval (0,10) on Fig. 9 shows also four peaks on
that interval of time.

Another way to see the partial synchrony in the malariatherapy patients is to
estimate the level of synchrony with the entropy formula [4]

s(t) =

5∑
i=1

pi log pi
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where pi is the proportion of stage i in the total infected population at time t:

pi(t) =
yi(t)∑5
j=1 yj(t)

.

This formula suggests that if s(t) is close to zero, the population is highly syn-
chronous (all the parasites are in the same age-class) and less synchronous other-
wise (see, for instance, [4]). The following figures represent the level of synchrony
in two of our four malariatherapy patients. These observation of low synchrony

SynchronyRatio

20 10 18Time

-1.5

-1.4

-1.3

-1.2

2

4

6

8

10

12

Figure 3. Patient G54: Degree of population synchrony (solid
line) and ratio of sequestered to circulating parasites (dashed line).
In this case the maximum synchrony is -1.129 while the minimum
is -1.571.

time20 40 60 80 100 120 160

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

-1.4

Figure 4. Degree of population synchrony in patient G221.
The different jumps of synchrony are caused by periods of free-
parasitemia in patient during the infection.

would serve as an additional validation of the model since it is classically observed
that Plasmodium falciparum malaria is less synchronous than other form of human
malaria [13, 20]. Also, since synchrony and the mean age of parasites define how pe-
ripheral parasiteamia may reflect total parasiteamia [8], one can estimate the ratio
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of sequestered to circulating parasites, over time, as predicted by the model. When
the patient is not cleared by parasiteamia, this ratio (Fig. 3) fluctuates over time.
For this particular patient, after the onset of the infection, the ration is greater than
1, i.e: there are more sequestered than circulating parasites. Another interesting
feature that can be seen on Fig. 3 is that the ratio increases or decreases along with
synchrony after the tenth day of infection. However at the onset of the infection
the level of synchrony and ratio is more disparate (ratio less than 1 while the syn-
chrony hits two main peaks). A possible explanation of this phenomenon is that at
the beginning of the infection, the correlation between sequestered and circulating
parasites depends more on the mean age of parasites than on synchrony [8].

4.3. Numerical estimation of β. Following Section 3 and by implementing the
equation (10) on Maple, we obtain numerical estimated values of β for different
patients. These estimates are given in Table 2.

# Patient β (×10−6)

S1204 0.44905

S1050 0.72557

G221 2.29484

G54 1.18315

Table 2. Estimated values for β based on the estimator (8)

In the next section we provide an estimate using an aggregate model and compare
with other values of β from the literature.

5. Aggregate model. The exact number of classes in the circulating or sequestered
phases of parasites is not completely known. Hence, we divide the dynamics of
parasite into two main classes, viz circulating parasites and sequestered parasites.
Gravenor et al. [8] have considered this decomposition as well, but they consider
only the dynamics of the infected cells. Figure 5 illustrates this decomposition.
Therefore, we aggregate the different infected erythrocyte stages in two stages y1
and y2 describing the circulating parasites that are measured and the sequestered
parasites respectively. We then obtain the following aggregated model:

ẋ = Λ− µxx− βxm
ẏ1 = βxm− (µ1 + γ1)y1

ẏ2 = γ1y1 − (µ2 + γ2)y2

ṁ = rγ2y5 − µmm− βxm

(11)

In our control theory framework, the system (11) could be written as:

ż = Az + E d+ Λ e1 (12a)

Y = C z (12b)

where:

z =


x

y1

y2

m

 , A =


−µx 0 0 0

0 −γ1 − µ1 0 0

0 γ1 −γ2 − µ2 0

0 0 rγ2 −µm

 ,
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sequestration. At the half-way point of parasite
development, the infected erythrocyte leaves the
circulating blood and binds to endothelium in
the microvasculature where the cycle is com-
pleted. Daughter parasites released at erythro-
cyte rupture re-enter the circulation and invade a
fresh erythrocyte. A measurement of P. falci-
parum parasitaemia taken from a blood smear
therefore samples young parasites only. It is
difficult to relate this measure to the total
parasite density. In many cases a population of
parasites develops in synchrony. A low periph-
eral parasitaemia may reflect low or high total
parasite numbers depending on the level of
synchrony and the mean age of the parasite
population. Peripheral parasitaemia therefore
tends not always to be a good correlate of
clinical parameters.
It is difficult to form a reliable picture of the

response to antimalarial therapy without knowing
the behaviour of the sequestered parasite popula-
tion. Since antimalarial drugs are known to act
preferentially on different stages of parasite
development, it is conceivable that a drug that
quickly cleared parasites from the peripheral
blood might effect slower clearance of sequestered
parasites. This is of particular importance since
parasite sequestration is considered central to the
pathology of severe malaria. White et al. (1992)
showed that mathematical models can be used to
describe patterns of parasite sequestration. Grave-
nor et al. (1998) presented a simple method for
generating estimates of the level of sequestered
infection from observed peripheral parasitaemia
in children undergoing drug treatment. Here, we
describe a general approach to modelling the age
structure of P. falciparum that can be adapted to
suit the particular data set that is to be analysed.
We provide a test of the approach using in vitro
populations of parasites, apply the model to two
detailed clinical data sets and use the model
predictions to investigate the relationship between
patient temperature and total parasite density.

Materials and Methods

A GENERAL AGE-STRUCTURED MODEL OF

THE ERYTHROCYTE CYCLE

Figure 1 illustrates the intraerythrocytic life
cycle of P. falciparum, which lasts approximately

48 h. In our model, we divide the cycle into a
number of successive compartments. One of the
critical problems to be discussed later is how
to decide upon the number of parasite compart-
ments in the model, but a useful starting point is
the morphological appearance of the parasite
as shown in the figure. Immediately after the
erythrocyte invasion, the parasite has the
appearance of a ‘ring’, after about 12 hr it
gradually adopts a more solid appearance and
is known as a ‘young trophozoite’ (or late ring).
After 24 hr the trophozoite continues to grow
and finally it becomes a ‘schizont’ or ‘segmenter’
for the last 12 hr or so of the cycle, before
rupturing to release daughter parasites which
infect other erythrocytes. In the infected indivi-
dual in vivo, the parasite-infected erythrocytes
circulate freely in the bloodstream during the
first half of the life cycle, but at about 24 hr into

Fig. 1. The mathematical model of the life cycle is
based on a finite number of compartments (here depicted as
circles), each representing an equal duration of develop-
ment time. In the above example, there are eight Compart-
ments and since the parasite life cycle is 48 hr, each
compartment represents 6 hr. Parasites can often be aged
on appearance. Four commonly used morphological stages
are young rings, late rings/young trophozoites, old tropho-
zoites and schizonts/segmenters. In this model, these are
each represented by two compartments (though more can
be used). In an infected individual, parasites in approxi-
mately the first half of the cycle (young rings–young
trophozoites) circulate freely and can be seen in the
peripheral blood, while all other parasites sequester in the
deep vasculature (old trophozoites–segmenters) and cannot
be detected.

M. B. GRAVENOR ET AL.138

Figure 5. Decomposition of Plasmodium falciparum cycle into
two classes.

E =


−1

1

0

−1

 and C = (0, 1, 0, 0).

The same observer (7) is valid. The choice of parameters is slightly easier in this
case. If we consider patients that are not taking drugs, the mortality of parasite
is very low [4]. Hence, we can consider, λ1 = 1.03, λ2 = 0.74 and µ1 = 0.42,
µ2 = 0.08 . The unit remains days−1. We choose these parameters on the basis
of the precedent application. The same constraint

∑2
i=1

1
λi

= 1.9101065 days is
satisfied. The other parameters are standards and are the same as for the above
application. With the choice L = (0, 5, 0, 0)T , we have successively:

Ā = (Id − E C)A =


−µx −γ1 − µ1 0 0

0 0 0 0

0 γ1 −γ2 − µ2 0

0 −γ1 − µ1 rγ2 −µm

 ,

(Ā− LC)E =


−µx −γ1 − µ1 0 0

0 −5 0 0

0 γ1 −γ2 − µ2 0

0 −γ1 − µ1 rγ2 −µm



−1

1

0

−1

 =


µx − γ1 − µ1

−5

γ1

−γ1 − µ1 + µm

 ,
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and

L+ (Ā− LC)E =


µx − γ1 − µ1

0

γ1

−γ1 − µ1 + µm


Hence, for this model, the observer is given by:

ẇ =


−µx −γ1 − µ1 0 0

0 −5 0 0

0 γ1 −γ2 − µ2 0

0 −γ1 − µ1 rγ2 −µm

w+


µx − γ1 − µ1

0

γ1

−γ1 − µ1 + µm

Y + Λe1

ẑ = w + Ey

(13)

With this observer (which is independent of β), we can estimate all vector states
and then the total parasite load y1 + y2. Using this observer (13) with data cor-
responding to the four patients we obtain estimates of the total parasite load that
are almost the same as those obtained with the first observer (8).

Following (10), we have implemented the observer using the data and then used
numerical integration together with linear regression to estimate β. The obtained
estimations of β for different patients with this method are given in Table 3. It
can be noticed that the values (Table 3) obtained with the aggregated model are
comparable to those (Table 2) obtained with the original system.

# Patient β (×10−6)

S1204 0.49172

S1050 0.69842

G221 2.36547

G54 1.10660

Table 3. Estimated values for β based on the estimator (13).

It is worthwhile to compare these results with some others in the literature. Het-
zel and Anderson [9] found, for rodents, β between 1.872× 10−6(cells/µl)−1 day−1

and 7.329×10−6(cells/µl)−1 day−1. Gravenor et al. in [6] have considered the model
(1) and with a quasi steady-state assumption and by using clinical data, have es-
timated β = 3.4833 × 10−6(cells/µl)−1 day−1. However as stated by the authors,
those assumptions are simplifying. By exploiting clinical data of parasitaemia used
in [6] in our method, we find β = 6.2734×10−6(cells/µl)−1 day−1. According to [6],
in order for the model to predict standard clinical parasitaemia, β would have to
be less than 2× 10−6(cells/µl)−1 day−1 (In fact β/µm < 10−3 in their units). Our
results are consistent with their claim.
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parasitaemia per micro-liter

t (days)

Figure 6. Patient G54: Measure (data) of peripheral para-
sitaemia (solid line), and estimated total parasitaemia (dashed).

6. Conclusion. The estimation of sequestered parasite population has been a chal-
lenge for the biologist and modeler, with many authors [8, 7, 19] having studied this
problem.

In this paper, we propose a different and simple method to estimate the total
parasite concentration from the measured circulating parasites and we show how
the parameter β can be estimated. To this end, we use some tools from control
theory. More precisely, we built an observer, i.e: an auxiliary dynamical system
whose states tend exponentially to the states of the original system (2). Moreover,
this auxiliary system does not depend on the uncertain parameter β.

To summarize, a method to estimate the total parasitaemia within a malaria
patient and the infection rate β has been given. This method is quite simple to
implement and to use with many types of data set. Stating which of those different
values of β is the best estimation is a difficult task. However our method is easy to
handle and can be used for any set of data.
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Figure 7. Patient S1050: Measure (data) of peripheral para-
sitaemia (solid line), and estimated total parasitaemia (dashed).

parasitaemia per micro-liter
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Figure 8. Patient G221: Measure (data) of peripheral para-
sitaemia (solid line), and estimated total parasitaemia (dashed).

In conclusion, one of our main objectives here is also to show how techniques
from control theory are useful to estimate parameters of epidemic and intra-host
models, and are therefore of wide applicability.
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Figure 9. Patient G221: A closer look of total parasitaemia on (0,10).
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