The global stability of an SIRS model with infection age

  • Received: 01 November 2012 Accepted: 29 June 2018 Published: 01 January 2014
  • MSC : Primary: 34D23; Secondary: 34G20, 35B35, 92D30.

  • -->
    Infection age is an important factor affecting the transmission ofinfectious diseases. In this paper, we consider an SIRS modelwith infection age, which is described by a mixed system ofordinary differential equations and partial differentialequations. The expression of the basic reproduction number$\mathscr {R}_0$ is obtained. If $\mathscr{R}_0\le 1$ then themodel only has the disease-free equilibrium, while if$\mathscr{R}_0>1$ then besides the disease-free equilibrium themodel also has an endemic equilibrium. Moreover, if$\mathscr{R}_0<1 then="" the="" disease-free="" equilibrium="" is="" globally="" asymptotically="" stable="" otherwise="" it="" is="" unstable="" if="" mathscr="" r="" _0="">1$ then the endemicequilibrium is globally asymptotically stable under additional conditions. The local stabilityis established through linearization. The global stability of thedisease-free equilibrium is shown by applying the fluctuationlemma and that of the endemic equilibrium is proved by employing Lyapunov functionals. The theoretical results are illustrated with numerical simulations.

    Citation: Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age[J]. Mathematical Biosciences and Engineering, 2014, 11(3): 449-469. doi: 10.3934/mbe.2014.11.449

    Related Papers:

    [1] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [2] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [3] Hui Cao, Dongxue Yan, Ao Li . Dynamic analysis of the recurrent epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 5972-5990. doi: 10.3934/mbe.2019299
    [4] Lu Gao, Yuanshun Tan, Jin Yang, Changcheng Xiang . Dynamic analysis of an age structure model for oncolytic virus therapy. Mathematical Biosciences and Engineering, 2023, 20(2): 3301-3323. doi: 10.3934/mbe.2023155
    [5] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . Mathematical analysis for an age-structured SIRS epidemic model. Mathematical Biosciences and Engineering, 2019, 16(5): 6071-6102. doi: 10.3934/mbe.2019304
    [6] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [7] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [8] Xiaohong Tian, Rui Xu, Jiazhe Lin . Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response. Mathematical Biosciences and Engineering, 2019, 16(6): 7850-7882. doi: 10.3934/mbe.2019395
    [9] Han Ma, Qimin Zhang . Threshold dynamics and optimal control on an age-structured SIRS epidemic model with vaccination. Mathematical Biosciences and Engineering, 2021, 18(6): 9474-9495. doi: 10.3934/mbe.2021465
    [10] Toshikazu Kuniya, Hisashi Inaba . Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Mathematical Biosciences and Engineering, 2023, 20(7): 13036-13060. doi: 10.3934/mbe.2023581
  • Infection age is an important factor affecting the transmission ofinfectious diseases. In this paper, we consider an SIRS modelwith infection age, which is described by a mixed system ofordinary differential equations and partial differentialequations. The expression of the basic reproduction number$\mathscr {R}_0$ is obtained. If $\mathscr{R}_0\le 1$ then themodel only has the disease-free equilibrium, while if$\mathscr{R}_0>1$ then besides the disease-free equilibrium themodel also has an endemic equilibrium. Moreover, if$\mathscr{R}_0<1 then="" the="" disease-free="" equilibrium="" is="" globally="" asymptotically="" stable="" otherwise="" it="" is="" unstable="" if="" mathscr="" r="" _0="">1$ then the endemicequilibrium is globally asymptotically stable under additional conditions. The local stabilityis established through linearization. The global stability of thedisease-free equilibrium is shown by applying the fluctuationlemma and that of the endemic equilibrium is proved by employing Lyapunov functionals. The theoretical results are illustrated with numerical simulations.


    [1] Math. Models Methods Appl. Sci., 21 (2011), 693-718.
    [2] J. Math. Bioi., 27 (1989), 233-258.
    [3] Appl. Math. Comput., 217 (2010), 4010-4016.
    [4] Nonlineaity, 24 (2011), 2891-2911.
    [5] SIAM. J. Appl. Math., 62 (2002), 1634-1656.
    [6] Lancet, 2 (1984), 1276-1277.
    [7] Springer-Verlag, Berlin, 1984.
    [8] Comm. Pure Appl. Math., 38 (1985), 733-753.
    [9] J. Biol. Dyn., 1 (2007), 109-131.
    [10] Math. Biosci., 190 (2004), 39-69.
    [11] Appl. Math. Comput., 218 (2012), 6519-6525.
    [12] British Medical J., 293 (1986), 1459-1462.
    [13] Chaos Solitons Fractals, 40 (2009), 145-158.
    [14] Z. Angew. Math. Phys., 62 (2011), 191-222.
    [15] Electron. J. Differntial Equations, 2001 (2001), 35 pp.
    [16] Appl. Anal., 89 (2010), 1109-1140.
    [17] SIAM J. Mah. Anal., 37 (2005), 251-275.
    [18] SIAM J. Appl. Math., 66 (2006), 843-872.
    [19] Math. Biosci. Eng., 6 (2009), 603-610.
    [20] British Medical J., 295 (1987), 567-569.
    [21] Lancet, 2 (1984), 1418-1420.
    [22] Differential Integral Equations, 3 (1990), 1035-1066.
    [23] in Advances in Mathematical Population Dynamics-Molecules, Cells and Man (eds. O. Arino, D. Axelrod and M. Kimmel), World Sci. Publ., (1997), 691-711.
    [24] SIAM J. Appl. Math., 53 (1993), 1447-1479.
    [25] J. Math. Anal. Appl., 385 (2012), 655-671.
    [26] Int. J. Biomath., 4 (2011), 329-346.
    [27] J. Math. Anal. Appl., 331 (2007), 1396-1414.
    [28] Math. Biosci. Eng., 5 (2008), 403-418.
  • This article has been cited by:

    1. Yuming Chen, Shaofen Zou, Junyuan Yang, Global analysis of an SIR epidemic model with infection age and saturated incidence, 2016, 30, 14681218, 16, 10.1016/j.nonrwa.2015.11.001
    2. Jianguo Gao, Chao Zhang, Jinliang Wang, Analysis of a reaction–diffusion SVIR model with a fixed latent period and non-local infections, 2020, 0003-6811, 1, 10.1080/00036811.2020.1750601
    3. Chao Zhang, Jianguo Gao, Hongquan Sun, Jinliang Wang, Dynamics of a reaction–diffusion SVIR model in a spatial heterogeneous environment, 2019, 533, 03784371, 122049, 10.1016/j.physa.2019.122049
    4. Juping Zhang, Dan Li, Wenjun Jing, Zhen Jin, The Competing Two-Strain SIS Pairwise Approximation Model With Infection Age, 2019, 7, 2169-3536, 100618, 10.1109/ACCESS.2019.2929787
    5. Junyuan Yang, Yuming Chen, Fei Xu, Effect of infection age on an SIS epidemic model on complex networks, 2016, 73, 0303-6812, 1227, 10.1007/s00285-016-0991-7
    6. Shanjing Ren, Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse, 2017, 14, 1551-0018, 1337, 10.3934/mbe.2017069
    7. Abdennasser Chekroun, Toshikazu Kuniya, V. Vougalter, V. Volpert, An infection age-space-structured SIR epidemic model with Dirichlet boundary condition, 2019, 14, 0973-5348, 505, 10.1051/mmnp/2019048
    8. Junyuan Yang, Yuming Chen, Theoretical and numerical results for an age-structured SIVS model with a general nonlinear incidence rate, 2018, 12, 1751-3758, 789, 10.1080/17513758.2018.1528393
    9. Jingjing Lu, Zhidong Teng, Yingke Li, An age-structured model for coupling within-host and between-host dynamics in environmentally-driven infectious diseases, 2020, 139, 09600779, 110024, 10.1016/j.chaos.2020.110024
    10. Lili Liu, Jinliang Wang, Xianning Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, 2015, 24, 14681218, 18, 10.1016/j.nonrwa.2015.01.001
    11. Xue-Zhi Li, Junyuan Yang, Maia Martcheva, 2020, Chapter 5, 978-3-030-42495-4, 153, 10.1007/978-3-030-42496-1_5
    12. RUI XU, NING BAI, XIAOHONG TIAN, GLOBAL DYNAMICS OF A MATHEMATICAL MODEL OF TUBERCULOSIS WITH AGE-DEPENDENT LATENCY AND ACTIVE INFECTION, 2019, 27, 0218-3390, 503, 10.1142/S0218339019500207
    13. Rui Xu, Junyuan Yang, Xiaohong Tian, Jiazhe Lin, Global dynamics of a tuberculosis model with fast and slow progression and age-dependent latency and infection, 2019, 13, 1751-3758, 675, 10.1080/17513758.2019.1683628
    14. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, The dynamics of an SVIR epidemiological model with infection age: Table 1., 2016, 81, 0272-4960, 321, 10.1093/imamat/hxv039
    15. Hai-Feng Huo, Peng Yang, Hong Xiang, Dynamics for an SIRS epidemic model with infection age and relapse on a scale-free network, 2019, 356, 00160032, 7411, 10.1016/j.jfranklin.2019.03.034
    16. J. Wang, M. Guo, T. Kuniya, Mathematical analysis for a multi-group SEIR epidemic model with age-dependent relapse, 2018, 97, 0003-6811, 1751, 10.1080/00036811.2017.1336545
    17. Junyuan Yang, Maia Martcheva, Lin Wang, Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence, 2015, 268, 00255564, 1, 10.1016/j.mbs.2015.07.003
    18. Junyuan Yang, Xiaoyan Wang, Threshold Dynamics of an SIR Model with Nonlinear Incidence Rate and Age-Dependent Susceptibility, 2018, 2018, 1076-2787, 1, 10.1155/2018/9613807
    19. Hiroshi Ito, Interpreting models of infectious diseases in terms of integral input-to-state stability, 2020, 32, 0932-4194, 611, 10.1007/s00498-020-00272-w
    20. Rui Xu, Global dynamics of an epidemiological model with age of infection and disease relapse, 2018, 12, 1751-3758, 118, 10.1080/17513758.2017.1408860
    21. Jianhua Pang, Jing Chen, Zijian Liu, Ping Bi, Shigui Ruan, Local and Global Stabilities of a Viral Dynamics Model with Infection-Age and Immune Response, 2019, 31, 1040-7294, 793, 10.1007/s10884-018-9663-1
    22. Jinliang Wang, Jiying Lang, Yuming Chen, Global threshold dynamics of an SVIR model with age-dependent infection and relapse, 2017, 11, 1751-3758, 427, 10.1080/17513758.2016.1226436
    23. Rui Xu, Xiaohong Tian, Fengqin Zhang, Global dynamics of a tuberculosis transmission model with age of infection and incomplete treatment, 2017, 2017, 1687-1847, 10.1186/s13662-017-1294-z
    24. Ran Zhang, Dan Li, Shengqiang Liu, GLOBAL ANALYSIS OF AN AGE-STRUCTURED SEIR MODEL WITH IMMIGRATION OF POPULATION AND NONLINEAR INCIDENCE RATE, 2019, 9, 2156-907X, 1470, 10.11948/2156-907X.20180281
    25. Yoichi Enatsu, Toshikazu Kuniya, Yoshiaki Muroya, Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection, 2015, 20, 1531-3492, 3057, 10.3934/dcdsb.2015.20.3057
    26. Hiroshi Ito, Input-to-state stability and Lyapunov functions with explicit domains for SIR model of infectious diseases, 2020, 0, 1553-524X, 0, 10.3934/dcdsb.2020338
    27. Dandan Sun, Yingke Li, Zhidong Teng, Tailei Zhang, Jingjing Lu, Dynamical properties in an SVEIR epidemic model with age‐dependent vaccination, latency, infection, and relapse, 2021, 44, 0170-4214, 12810, 10.1002/mma.7583
    28. Chunyue Wang, Jinliang Wang, Ran Zhang, Global analysis on an age‐space structured vaccination model with Neumann boundary condition, 2022, 45, 0170-4214, 1640, 10.1002/mma.7879
    29. Zakya Sari, Tarik Mohammed Touaoula, Bedreddine Ainseba, Mathematical analysis of an age structured epidemic model with a quarantine class, 2021, 16, 0973-5348, 57, 10.1051/mmnp/2021049
    30. Hiroshi Ito, Strict Smooth Lyapunov Functions and Vaccination Control of the SIR Model Certified by ISS, 2022, 67, 0018-9286, 4514, 10.1109/TAC.2022.3161395
    31. Yukihiko Nakata, Yoichi Enatsu, Hisashi Inaba, Toshikazu Kuniya, Yoshiaki Muroya, Yasuhiro Takeuchi, Stability of epidemic models with waning immunity, 2014, 50, 0916-5746, 10.55937/sut/1424972727
    32. Chin-Lung Li, Chun-Hsien Li, Chang-Yuan Cheng, Analysis of an epidemiological model with age of infection, vaccination, quarantine and asymptomatic transmission, 2023, 360, 00160032, 657, 10.1016/j.jfranklin.2022.06.036
    33. Jingjing Lu, Qiaoling Chen, Zhidong Teng, Tingting Zheng, Dynamical analysis of an age‐structured SIRE epidemic model with two routes of infection in environment, 2022, 148, 0022-2526, 461, 10.1111/sapm.12447
    34. Zhonghu Luo, Zijian Liu, Yuanshun Tan, Jin Yang, Huanhuan Qiu, Threshold behavior of an age-structured tumor immune model, 2023, 18, 0973-5348, 6, 10.1051/mmnp/2023001
    35. Guodong Pang, Étienne Pardoux, Functional Law of Large Numbers and PDEs for Epidemic Models with Infection-Age Dependent Infectivity, 2023, 87, 0095-4616, 10.1007/s00245-022-09963-z
    36. Lili Liu, Xiaomin Ma, Yazhi Li, Xianning Liu, Mathematical analysis of global dynamics and optimal control of treatment for an age-structured HBV infection model, 2023, 177, 09600779, 114240, 10.1016/j.chaos.2023.114240
    37. Miao Zhou, Junyuan Yang, Jiaxu Li, Guiquan Sun, The Role of Medical Supply Shortages on an Age‐Structured Epidemic Model, 2025, 154, 0022-2526, 10.1111/sapm.70019
    38. Achraf Zinihi, Moulay Rchid Sidi Ammi, Matthias Ehrhardt, Dynamical behavior of a stochastic epidemiological model: stationary distribution and extinction of a SIRS model with stochastic perturbations, 2025, 2254-3902, 10.1007/s40324-025-00381-z
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3655) PDF downloads(859) Cited by(38)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog