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Abstract. Infection age is an important factor affecting the transmission of

infectious diseases. In this paper, we consider an SIRS model with infection

age, which is described by a mixed system of ordinary differential equations
and partial differential equations. The expression of the basic reproduction

number R0 is obtained. If R0 ≤ 1 then the model only has the disease-free

equilibrium, while if R0 > 1 then besides the disease-free equilibrium the
model also has an endemic equilibrium. Moreover, if R0 < 1 then the disease-

free equilibrium is globally asymptotically stable otherwise it is unstable; if
R0 > 1 then the endemic equilibrium is globally asymptotically stable under

additional conditions. The local stability is established through linearization.

The global stability of the disease-free equilibrium is shown by applying the
fluctuation lemma and that of the endemic equilibrium is proved by employing

Lyapunov functionals. The theoretical results are illustrated with numerical

simulations.

1. Introduction. In most epidemiological models for the transmission of infectious
diseases, the infectious individuals are assumed to have the same infectivity. This
assumption is reasonable in modeling communicable diseases such as influenza [2]
and sexually transmitted diseases such as gonorrhea [7]. However, in the study of
the HIV/AIDS epidemic, early infectivity experiments and the measurements of
antigen and antibody titers suggest the possibility of an early infectivity peak (a
few weeks after exposure) [6] and a late infectivity plateau (one year or so before
the onset of “full-blown” AIDS) for HIV-infected individuals [12, 20, 21]. Therefore,
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it is necessary to incorporate the infection age (that is, the time that has passed
since infection) into modeling.

By aggregating individuals with certain infection-ages into groups and by assum-
ing homogeneity in each infection-age group, some researchers formulate infection
age models governed by systems of ordinary differential equations or systems of dif-
ference equations. To name a few, see [9, 19, 28]. Then, to unify such models with
an arbitrary number of stages, models described by systems of ordinary and differ-
ential equations are proposed (see, for example, [1, 4, 5, 10, 16, 18, 24, 25, 26, 27]
and the references therein).

Though epidemic models with infection age have been studied extensively, most
of the works only focus on the local stability of equilibria. To the best of our
knowledge, results on global stability of equilibria are established only in [16, 25, 26].
In [16], Magal et al. studied an SI model; while in [25], Yang et al. considered an
DI-DS model. As we know, in some infectious diseases, the infected can recover
and be infected again. Therefore, it is worthy to study SIS and SIRS models. The
purpose of this paper is to study the global stability of an SIRS model with infection
age. This model is a special case of the one proposed in [27]. However, to be self-
contained, we formulate the model in Section 2. For some recent results on the
stability of SIRS models described by systems of ordinary differential equations, we
refer readers to [3, 11, 13].

The remaining of this paper is organized as follows. After formulating the model
in Section 2, we study the existence of equilibria in Section 3. We obtain the
expression of the basic reproduction number R0. If R0 ≤ 1 then the model only
has the disease-free equilibrium; while if R0 > 1 then the model also has an endemic
equilibrium besides the disease-free equilibrium. Section 4 is the main part of this
paper, which is devoted to the stability of equilibria. We first develop the results
on the linearized system around an equilibrium and its characteristic equation.
These results are then applied to establish the local stability of the equilibria. The
significant contribution of this paper is the global stability of equilibria. The global
stability of the disease-free equilibrium is established by applying the fluctuation
lemma and that of the endemic equilibrium is obtained by employing Lyapunov
functionals. The paper concludes with a brief discussion together with numerical
simulations to illustrate the main theoretical results.

2. The model formulation. In the classic SIRS models, the total population
is divided into three epidemiological classes: susceptible, infected, and recovered
(or removed). The numbers of individuals in these classes at time t are denoted
respectively by S(t), I(t), and R(t). Our model is based on the following SIRS
model, 

dS(t)

dt
= Λ− βS(t)I(t)− µS(t) + δR(t),

dI(t)

dt
= βS(t)I(t)− (µ+ k)I(t),

dR(t)

dt
= kI(t)− (µ+ δ)R(t).

Here Λ is the recruitment rate of susceptibles, β is the transmission coefficient, µ is
the natural death rate, 1/k is the infectious period, and δ is the progression rate of
the removed.

To incorporate the age of infection (for simplicity, referred to age in the remaining
of this paper), let a denote the age and let i(t, a) denote the age density of infected
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individuals at time t. Then we obtain the following model described by a system of
ordinary and partial differential equations,

dS(t)

dt
= Λ− S(t)

∫ ∞
0

β(a)i(t, a)da− µS(t) + δR(t),

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −(µ+ k(a))i(t, a),

dR(t)

dt
=

∫ ∞
0

k(a)i(t, a)da− (µ+ δ)R(t),

(1)

with the boundary and initial conditions

i(t, 0) = S(t)

∫ ∞
0

β(a)i(t, a)da, t > 0,

S(0) = S0 ≥ 0, R(0) = R0 ≥ 0,

i(0, a) = i0(a) ∈ L1
+(R+,R),

where β(a) is the transmission coefficient with age a, 1/k(a) is the infectious pe-
riod of infected individuals with age a, and L1

+(R+,R) = {f : R+ → R|f(x) ≥
0 for x ∈ R+ and

∫∞
0
f(x)dx <∞}. From the perspective of biology, β(a), k(a) ∈

CBU (R+,R+), where CBU (R+,R+) is the set of all bounded and uniformly contin-
uous functions from R+ into R+.

Notice that the total population at time t is

N(t) = S(t) +

∫ ∞
0

i(t, a)da+R(t).

We can easily see that N(t) satisfies the following ordinary differential equation,

dN(t)

dt
= Λ− µN(t).

It follows that

lim
t→∞

N(t) =
Λ

µ
. (2)

For convenience, we rewrite (1) as follows,

∂i(t, a)

∂t
+
∂i(t, a)

∂a
= −(µ+ k(a))i(t, a),

dV (t)

dt
= G(i(t, a), V (t))− CV (t),

i(t, 0) = S(t)
∫∞

0
β(a)i(t, a)da, t > 0,

i(0, a) = i0(a) ∈ L1
+(R+,R),

V (0) = V0 ∈ R2
+,

(3)

where

V (t) =

 S(t)

R(t)

 ,

C =

 µ 0

0 µ+ δ

 ,



452 YUMING CHEN, JUNYUAN YAN AND FENGQIN ZHANG

G(i(t, a), V (t)) =

 Λ− S(t)
∫∞

0
β(a)i(t, a)da+ δR(t)∫∞

0
k(a)i(t, a)da

 .

Set X = Y ×R2, where Y = R×L1(R+,R) with

∥∥∥∥
 α

φ

∥∥∥∥ = |α|+‖φ‖L1(R+,R).

Furthermore, we define

X+ = Y+ × R2
+, X0 = Y0 × R2, X0+ = X0 ∩X+,

where
Y+ = R+ × L1

+(R+,R), Y0 = {0} × L1(R+,R).

Define A1 : D(A1) ⊂ Y → Y by

A1

 0

φ

 =

 −φ(0)

−φ′ − (µ+ k(a))φ


with D(A1) = {0}×W 1,1(R+,R). If λ ∈ C with Reλ > −µ, then λ ∈ ρ(A1), where
ρ(A1) is the resolvent set of A1. Moreover, if λ ∈ ρ(A1) and

(λI −A1)−1

 θ

ψ

 =

 0

φ

 ,

then

φ(a) = e−(λ+µ)aθ +

∫ a

0

e−
∫ a
s
k(l)dle−(λ+µ)(a−s)ψ(s)ds.

Now we can rewrite (3) as

d

dt

 0

i(t, .)

 = A1

 0

i(t, .)

+ F1

 0

i(t, .)

 , V (t)

 ,

dV (t)

dt
= −CV (t) + F2

 0

i(t, .)

 , V (t)

 ,

i(0, a) = i0(a) ∈ L1
+(R+,R),

V (0) = V0 ∈ R2
+,

(4)

where

F1

 0

i(t, .)

 , V (t)

 =

 B(i(t, .), V (t))

0

 ,

B(i(t, .), V (t)) = S(t)

∫ ∞
0

β(a)i(t, a)da,

F2

 0

i(t, .)

 , V (t)

 =

 Λ− S(t)
∫∞

0
β(a)i(t, a)da+ δR(t)∫∞

0
k(a)i(t, a)da

 .

To express (4) as an ordinary differential equation on a Banach space, we write

u(t) =

 0

i(t, .)

 , V (t)

 .
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Let L : D(L) ⊂ X → X be the linear operator defined by

L(u(t)) =

A1

 0

i(t, .)

 ,−CV (t)

 ,

where D(L) = Z×R2 with Z = {0}×W 1,1(R+,R). It follows that X0 = D(L) and

X0+ = D(L) ∩ X+. So D(L) = X0 is not dense in X. We consider the nonlinear

map F : D(L)→ X defined by F (u(t)) =

 F1(u(t))

F2(u(t))

. Then (4) can be rewritten

as 
du(t)
dt = Lu(t) + F (u(t)),

u(0) =

 0

i0(·)

 , V0

 ∈ D(L).
(5)

The following result can be obtained by using the fact that the nonlinearities are
Lipschitz continuous on bounded sets, by using (2), and by applying the results
in [15].

Proposition 2.1. There exists a uniquely determined semiflow {U(t)}t≥0 on X0+

such that, for each u =

 0

i(t, .)

 , V (t)

 ∈ X0+, there exists a unique continu-

ous map U ∈ C(R+, X0+) which is an integral solution of the Cauchy problem (5),
that is, for all t ≥ 0,∫ t

0
U(s)uds ∈ D(L) and U(t)u = u+ L

∫ t
0
U(s)uds+

∫ t
0
F (U(s)u)ds.

Since k(a) is uniformly continuous, we can deduce that the semiflow {U(t)}t≥0

is asymptotically smooth. Moreover, {U(t)}t≥0 is bounded dissipative by using (2).
Define µ̂ = max

0≤a<∞
{µ, µ+ k(a), µ+ δ} and Ω := {λ ∈ C : Re(λ) ≥ −µ̂}. By using

the results in [22], we obtain the following lemma.

Lemma 2.2. If λ ∈ Ω then λ ∈ ρ(λ). More precisely, for any λ > −µ̂, any α

ψ

 ,

 ψ1

ψ2

 ∈ X, and

 0

ϕ

 ,

 ϕ1

ϕ2

 ∈ D(L), we have

(λI − L)−1

 α

ψ

 ,

 ψ1

ψ2

 =

 0

ϕ

 ,

 ϕ1

ϕ2


if and only if

ϕ(a) = e−
∫ a
0

(λ+µ+k(l))dlα+

∫ a

0

e−
∫ a
s

(λ+µ+k(l))dlψ(s)ds, (6)

ϕ1 =
ψ1

λ+ µ
,

ϕ2 =
ψ2

λ+ µ+ δ
.
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Moreover, L is a Hille-Yosida operator and

‖(λI − L)−n‖ ≤ M

(Re(λ) + µ̂)n
for Re(λ) > −µ̂ and n ≥ 1.

Proof. For any

 α

ψ

 ∈ Y and

 0

ϕ

 ∈ D(A1), we have

(λI −A1)−1

 α

ψ

 =

 0

ϕ

 ,

that is,

ϕ(0) = α,

ϕ′(a) = −(λ+ µ+ k(a))ϕ+ ψ.

Then (6) follows easily. From the definition of L, one directly gets

(λ+ µ)ϕ1 = ψ1,

(λ+ µ+ δ)ϕ2 = ψ2.

Thus

ϕ1 =
ψ1

λ+ µ
,

ϕ2 =
ψ2

λ+ µ+ δ
.

For any λ > −µ̂, we have∥∥∥∥∥∥(λ− L)−1

 α

ψ

 ,

 ψ1

ψ2

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
 0

e−
∫ a
0

(λ+µ+k(l))dlα+
∫ a

0
e−

∫ a
s

(λ+µ+k(l))dlψ(s)ds

 ,

 ψ1

λ+µ

ψ2

λ+µ+δ

∥∥∥∥∥∥
X

≤
∫ ∞

0

∣∣∣e− ∫ a
0

(λ+µ+k(l))dl
∣∣∣ da|α|+ ∫ ∞

0

∣∣∣∣∫ a

0

e−
∫ a
s

(λ+µ+k(l))dlψ(s)ds

∣∣∣∣ da
+
|ψ1|
|λ+ µ|

+
|ψ2|

|λ+ µ+ δ|

≤ |α|
|λ+ µ̂|

+

∫ ∞
0

e(λ+µ̂)τ |ψ(τ)|
∫ ∞
τ

|e−(λ+µ̂)a|dadτ +
|ψ1|
|λ+ µ|

+
|ψ2|

|λ+ µ+ δ|

≤ 1

|Re(λ) + µ̂|
(|α|+ ‖ψ‖L1 + |ψ1|+ |ψ2|).

The results immediately follow.

3. Existence of equilibria. In this section, we consider the existence of equilibria
of (5). Denote

π(a) = e−
∫ a
0
k(s)ds, a ≥ 0,

K =

∫ ∞
0

β(a)e−µaπ(a)da,



SIRS MODEL WITH INFECTION AGE 455

K1 =

∫ ∞
0

k(a)e−µaπ(a)da.

Note that K1 ≤
∫∞

0
k(a)π(a)da = 1.

Theorem 3.1. Let R0 = ΛK/µ. Then the following statements are true.

(i) Equation (5) always has a disease-free equilibrium P0 =

 0

0

 ,

 Λ
µ

0

.

(ii) If R0 ≤ 1 then P0 is the only equilibrium of (5) while if R0 > 1 then it also
has an endemic equilibrium P ∗ given by

P ∗ =

 0

i(0)e−µaπ(a)

 ,

 1
K

i(0)K1

µ+δ

 , (7)

where

i(0) =
Λ(1− 1

R0
)

1− δ
µ+δK1

. (8)

Proof. Suppose that u =

 0

i(a)

 ,

 S

R

 ∈ X0 is an equilibrium of (5).

Then we have

− i(0) + S

∫ ∞
0

β(a)i(a)da = 0, (9)

−i′(a)− (µ+ k(a))i(a) = 0, (10)

Λ− S
∫ ∞

0

β(a)i(a)da− µS + δR = 0, (11)∫ ∞
0

k(a)i(a)da− (µ+ δ)R = 0. (12)

It follows from (10) that i(a) = i(0)e−µaπ(a). If i(0) = 0 then we easily get the
disease-free equilibrium P0. Now, suppose that i(0) 6= 0. It follows from (9) and (12)
respectively that S = 1/K and R = i(0)K1/(µ + δ). These, combined with (11),
tell us that i(0) is given by (8). Noting K1 < 1, we see that i(0) > 0 if and only
if R0 > 1. Thus if R0 ≤ 1, then (5) only has the disease-free equilibrium P0; if
R0 > 1, then, besides P0, (5) also has an endemic equilibrium P ∗ given by (7).
This completes the proof.

Notice that β(a)e−µaπ(a) is the probability of an infected person with age a
infecting a susceptible and still staying in the infected compartment due to death
and treatment. So the biological meaning of the basic reproduction number R0 is
the total expected number of the infected susceptibles.

4. Stability of equilibria. In the previous section, we obtained the existence of
equilibria. In this section, we study their stability. The local stability is obtained
by analyzing the spectrum of the linearized operator around each equilibrium.
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4.1. Linearized systems and their characteristic equations. Let u be an
equilibrium of (5). Linearize (5) about u to obtain the linearized system,

dy
dt = (L+DF (u))y(t),

y(0) = y0 ∈ D(L).

Denote the part of L in D(L) by L0, that is, D(L0) = {x ∈ D(L) : Lx ∈ D(L)}

and L0u = Lu for u ∈ D(L0). It follows that, for

 0

ϕ

 ,

 ϕ1

ϕ2

 ∈ D(L0),

we have

L0

 0

ϕ

 ,

 ϕ1

ϕ2

 =

 0

Â10ϕ

 ,

 −µϕ1

−(µ+ δ)ϕ2

 ,

where Â10ϕ = −ϕ′ − (µ + k(a))ϕ with D(Â10) = {ϕ ∈ W 1,1(R+,R) : ϕ(0) = 0}.
Then we can easily get the following result.

Lemma 4.1. The linear operator L0 is the infinitesimal generator of the strongly
continuous semigroup {TL0(t)}t≥0 of bounded linear operators on D(L) and for each
t ≥ 0 the linear operator TL0

(t) is defined by

TL0
(t)

 0

ϕ

 ,

 ϕ1

ϕ2

 =

 0

T̂A10
(t)ϕ

 ,

 e−µtϕ1

e−(µ+δ)tϕ2

 ,

where

T̂A10
(t)ϕ(a) =

 e−
∫ a
a−t

(µ+k(l))dlϕ(a− t), a ≥ t,

0, otherwise.

Definition 4.2 ([14]). Let L : D(L) ⊂ X → X be the infinitesimal generator of a
linear C0-semigroup {TL(t)}t≥0 on a Banach space X. We define the growth bound
w0(L) ∈ [−∞,∞) of L by

w0(L) = lim
t→∞

ln(‖TL(t)‖X)

t
.

The essential growth bound w0,ess(L) ∈ [−∞,∞) of L is defined by

w0,ess(L) = lim
t→∞

ln(‖TL(t)‖ess)
t

,

where ‖TL(t)‖ess is the essential norm of TL(t) defined by

‖TL(t)‖ess = κ(TL(t)BX(0, 1)).

Here BX(0, 1) = {x ∈ X : ‖x‖X ≤ 1} and, for each bounded set B ⊂ X,

κ(B) = inf{ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}

is the Kuratowski measure of non-compactness.

Now we estimate the essential growth bound of the strongly semigroup gener-
ated by (L + DF (u))0, which is part of L + DF (u) in D(L). Note that for any



SIRS MODEL WITH INFECTION AGE 457 0

ϕ

 ,

 ϕ1

ϕ2

 ∈ D(L), we have

DF (u)

 0

ϕ

 ,

 ϕ1

ϕ2


=

 DB(i(·), V )(ϕ,ϕ1)

0

 ,
(
DF2(u)(ϕ,ϕ1, ϕ2)

)
=

 ϕ1

∫∞
0
β(a)i(a)da+ S

∫∞
0
β(a)ϕ(a)da

0

 ,

 −ϕ1

∫∞
0
β(a)i(a)da− S

∫∞
0
β(a)ϕ(a)da+ δϕ2∫∞

0
k(a)ϕ(a)da

 .

We can easily see that DF (u) is a Fredholm operator. It follows from Lemma 2.2
and Definition 4.2 that

w0,ess(L0) ≤ w0(L0) ≤ −µ̂.

Due to Thieme [23], we obtain

w0,ess(L+DF (u))0 ≤ −µ̂ < 0.

In summary, we have proved the following result.

Theorem 4.3. The essential growth rate of the strongly continuous semigroup gen-
erated by (L+DF (u))0 is strictly negative, that is, ω0,ess((L+DF (u))0) < 0.

To study the stability of the equilibria, we denote Q := DF (u) for simplicity of
notation. Let λ ∈ Ω. Since λI −L is invertible, it follows that λI − (L+DF (u)) =
λI − (L+Q) is invertible if and only if I −Q(λI − L)−1 is invertible. In addition,

(λI − (L+Q))−1 = (λI − L)−1[I −Q(λI − L)−1]−1.

Consider

(I −Q(λI − L)−1)

 α

ϕ

 ,

 ϕ1

ϕ2

 =

 γ

ψ

 ,

 ψ1

ψ2

 .

By Lemma 2.2, we obtain
α

ϕ

ϕ1

ϕ2

−Q


0

e−
∫ a
0

(λ+µ+k(l))dlα+
∫ a

0
e−

∫ a
s

(λ+µ+k(l))dlψ(s)ds

ϕ1

λ+µ

ϕ2

λ+µ+δ

 =


γ

ψ

ψ1

ψ2


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Noting the definitions of DF and DB, we obtain
∆(λ)


α

ϕ1

ϕ2

 = Ψ(λ, ψ) +


γ

ψ1

ψ2

 ,

ϕ = ψ,

where

∆(λ) = I −


SK̂(λ)

∫∞
0
β(a)i(a)da

λ+µ 0

−SK̂(λ) −
∫∞
0
β(a)i(a)da

λ+µ
δ

λ+µ+δ

K̂1(λ) 0 0

 , (13)

K̂(λ) =

∫ ∞
0

β(a)π(a)e−(λ+µ)ada,

K̂1(λ) =

∫ ∞
0

k(a)π(a)e−(λ+µ)ada,

Ψ(λ, ψ) =


S
∫∞

0
β(a)

∫ a
0
e−

∫ a
s

(λ+µ+k(l))dlψ(s)dsda

−S
∫∞

0
β(a)

∫ a
0
e−

∫ a
s

(λ+µ+k(l))dlψ(s)dsda∫∞
0
k(a)

∫ a
0
e−

∫ a
s

(λ+µ+k(l))dlψ(s)dsda

 . (14)

Lemma 4.4. The following statements are true.

(i) σ(L+Q) ∩ Ω = σp(L+Q) ∩ Ω = {λ ∈ Ω : det ∆(λ) = 0}.
(ii) Suppose λ ∈ ρ(L+Q) ∩ Ω. Then

(λI − (L+Q))−1

 α

ϕ

 ,

 ϕ1

ϕ2

 =

 0

ψ

 ,

 ψ1

ψ2


if and only

ψ(a) = e−(λ+µ)aπ(a)(∆(λ)−1((α,ϕ1, ϕ2)T + Ψ(λ, ϕ))1

+

∫ a

0

e−
∫ a
s

(λ+µ+k(l))dlϕ(s)ds,

ψ1 =
(∆(λ)−1((α,ϕ1, ϕ2)T + Ψ(λ, ϕ))2

λ+ µ
,

ψ2 =
(∆(λ)−1((α,ϕ1, ϕ2)T + Ψ(λ, ϕ))3

λ+ µ+ δ
,

where ∆(λ) and Ψ(λ, ϕ) are defined respectively by (13) and (14), and ()i
denotes the ith element of a vector ().

Proof. Assume that λ ∈ Ω and det(∆(λ)) 6= 0. Then we have

(λI − (L+Q))−1

 α

ϕ

 ,

 ϕ1

ϕ2


= (λI − L)−1(I −Q(λI − L)−1)−1

 α

ϕ

 ,

 ϕ1

ϕ2


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=

 0

ψ

 ,

 ψ1

ψ2

 .

Thus (ii) follows from Lemma 2.2. We also see that {λ ∈ Ω : det ∆(λ) 6= 0} ⊂
ρ(L+Q) and hence σ(L+Q)∩Ω ⊂ {λ ∈ Ω : det ∆(λ) = 0}. Now, assume that λ ∈ Ω
and det ∆(λ) = 0. We want to show that λ ∈ σp(L+Q), that is, we want to find a

nonzero solution to (L+Q)u = λu. In fact, for u =

 0

ϕ

 ,

 ϕ1

ϕ2

 ∈ D(L),

we have

(L+Q)u =

 −ϕ(0)

−ϕ′ − (µ+ k(a))ϕ

 ,

 −µϕ1

−(µ+ δ)ϕ2


+

 B(u)u

0

 , DF2(u)u

 .

Then (L+Q)u = λu gives

−ϕ(0) +B(u)u = 0,

−ϕ′ − (µ+ k(a))ϕ = λϕ, −(λ+ µ) 0

0 −(λ+ µ+ δ)

 ϕ1

ϕ2

+DF2(u)u = 0.

(15)

From the second equation of (15) we get ϕ(a) = ϕ(0)e−(λ+µ)aπ(a). Substituting it
into the other equations of (15) yields ∆(λ)(ϕ(0), ϕ1, ϕ2)T = 0. This implies that
(L+Q)u = λu has a nonzero solution if and only if we can find (ϕ(0), ϕ1, ϕ2)T 6= 0
such that ∆(λ)(ϕ(0), ϕ1, ϕ2)T = 0, which is true since det ∆(λ) = 0. This proves
that λ ∈ σp(L+Q) and hence the proof is complete.

With the above preparation, we are ready to study the stability of equilibria.

4.2. Stability of the disease-free equilibrium P0.

Theorem 4.5. The disease-free equilibrium P0 is locally asymptotically stable if
R0 < 1 and it is unstable if R0 > 1.

Proof. At P0, we have

∆(λ) = I −


Λ
µ K̂(λ) 0 0

−Λ
µ K̂(λ) 0 δ

λ+µ+δ

K̂1(λ) 0 0

 .

Obviously, det(∆(λ)) = 0 if and only if 1 = Λ
µ K̂(λ). Notice that |Λµ K̂(λ)| ≤ R0 for

all λ ∈ C with nonnegative real parts. Therefore, if R0 < 1 then Λ
µ K̂(λ) < 1. This

implies that all solutions of det(∆(λ)) = 0 have negative real parts if R0 < 1 and
hence P0 is locally asymptotically stable if R0 < 1. Now suppose that R0 > 1. Note
that Λ

µ K̂(λ) is a decreasing function with Λ
µ K̂(0) = R0 and Λ

µ K̂(λ)→ 0 as λ→∞.

Therefore, if R0 > 1 then there always exists a positive solution to det(∆(λ)) = 0.
This means that P0 is unstable if R0 > 1 and the proof is complete.
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To deal with the global stability of P0, we need some notations. For a function
ϕ : R+ → R, we denote

ϕ∞ = lim inf
t→∞

ϕ(t) and ϕ∞ = lim sup
t→∞

ϕ(t).

Lemma 4.6 (Fluctuation Lemma [8]). Let ϕ : R+ → R be a bounded and contin-
uously differentiable function. Then there exist sequences {sn} and {tn} such that
sn → ∞, tn → ∞, ϕ(sn) → ϕ∞, ϕ′(sn) → 0, ϕ(tn) → ϕ∞, and ϕ′(tn) → 0 as
n→∞.

Theorem 4.7. Suppose that R0 < 1. Then the disease-free equilibrium P0 is a
global attractor, i.e., lim

t→∞
(i, S,R) = (0, Λ

µ , 0).

Proof. By Proposition 2.1, any solution interested is nonnegative. It follows from (2)
that N∞ = Λ

µ and hence S∞ ≤ Λ
µ . Integrating the equation for i in (1) along the

characteristic lines, t− a = constant, yields

i(t, a) =

 B(t− a)e−µaπ(a), a < t,

i0(a− t)e−µt π(a)
π(a−t) , a ≥ t,

(16)

where B(t) = S(t)
∫∞

0
β(a)i(t, a)da. Substitute i(t, a) into B(t) to obtain

B(t) = S(t)

∫ t

0

β(a)B(t− a)e−µaπ(a)da+ F (t), (17)

where F (t) = S(t)
∫∞
t
i0(a−t)e−µt π(a)

π(a−t)da. By Lemma 4.6, there exists a sequence

{tn} such that tn →∞ and B(tn)→ B∞ as n→∞. Then in (17) letting t = tn and
n → ∞ gives us B∞ ≤ S∞KB∞ since lim

t→∞
F (t) = 0. This implies that B∞ = 0

since B∞ ≥ 0 and S∞K ≤ ΛK/µ = R0 < 1. So lim
t→∞

B(t) = 0. This, combined

with (16), gives lim
t→∞

i(t, a) = 0 for all a ∈ R+.

Now, we get from the equation on R(t) in (1) that

dR(t)

dt
=

∫ t

0

k(a)B(t− a)e−µaπ(a)da− (µ+ δ)R(t)

+

∫ ∞
t

k(a)i0(a− t)e−µt π(a)

π(a− t)
da.

With the help of Lemma 4.6 again, there is a sequence {vn} such that vn → ∞,

R(vn)→ R∞, and d
dtR(vn)→ 0. Then we can get R∞ ≤ K1B

∞

µ+δ = 0.

Finally, we apply Lemma 4.6 to S∞. It follows from the first equation of (1) that
S∞ ≥ Λ/µ. This, combined with S∞ ≤ Λ/µ, gives lim

t→∞
S(t) = Λ

µ and hence the

proof is complete.

4.3. Persistence. When R0 > 1, P0 is unstable. We show that in this case the
system is persistent and hence the disease will establish.

Let Π : X0 → L1(R+,R) be the Poincare projector defined by

Π(v) = v1(t, a) for v =

 0

v1

 ,

 v2

v3

 ∈ X0.

Set
M = X0+, M0 = {v ∈M : Π(v) 6= 0}, ∂M0 = M \M0.
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Following [15], we have the following lemma.

Lemma 4.8. The subsets M0 and ∂M0 are both positively invariant under the
semiflow {U(t)}t≥0, namely, U(t)M0 ⊂M0 and U(t)∂M0 ⊂ ∂M0 for t ≥ 0.

The persistence of (5) is established by using the results in Magal and Zhao [17].
For this purpose, since P0 is globally asymptotically stable in ∂M0, it is sufficient
to prove that there exists ε > 0 with the property that for each v ∈ {y ∈ M0 :
‖P0 − y‖ ≤ ε} there exists t0 ≥ 0 such that

‖P0 − U(t)v‖ > ε for t > t0.

This shows that P0 is the largest invariant set for U in the neighborhood of P0 and
also leads to

W s(P0) ∩M0 = ∅,

where

W s(P0) = {v ∈ X0+ : lim
t→∞

U(t)v = P0}.

Theorem 4.9. Assume that R0 > 1. The semiflow {U(t)}t≥0 is uniformly per-
sistent with respect to the pair (∂M0,M0), that is, there exists ε > 0 such that
lim
t→∞

‖Πv(t)‖ ≥ ε for x ∈ M0. Moreover, there exists a compact subset A0 of M0

which is a global attractor for {U(t)}t≥0 in M0.

Proof. By way of contradiction, assume that for every n ∈ N there exists vn ∈ {y ∈
M0 : ‖P0 − y‖ ≤ 1

n+1} such that

‖P0 − U(t)vn‖ ≤
1

n+ 1
for t ≥ 0. (18)

Write U(t)vn as

 0

vn1

 ,

 vn2

vn3

. Then we have

|vn2 (t)− S0| = |Sn(t)− S0| ≤ 1

n+ 1
for t ≥ 0.

Moreover, the map t 7→

 0

vn1

 is an integral solution of the Cauchy problem



d
dt

 0

vn1 (t, ·)

 = A1

 0

vn1

+

 vn2 (t)
∫∞

0
β(a)vn1 (t, a)da

0


for t ≥ 0, 0

vn1 (0, ·)

 =

 0

vn10

 .

Since vn2 (t) ≥ S0 − 1
n+1 , by the comparison principle, we deduce that

vn1 (t, ·) ≥ v̂n1 (t, ·), (19)
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where v̂n1 (t, ·) is a solution of the linear abstract ordinary differential equation

d
dt

 0

vn1 (t, ·)

 = A1

 0

vn1

+

 (
S0 − 1

n+1

) ∫∞
0
β(a)v̂n1 (t, a)da

0


for t ≥ 0, 0

vn1 (0, ·)

 =

 0

vn10

 .

(20)
We can easily see that, for all n large enough, the dominated eigenvalue of the linear
equation (20) satisfies the characteristic equation

K̂(λ0n)

(
S0 − 1

n+ 1

)
= 1.

Since R0 > 1, using similar arguments as in the proof of Theorem 4.5, we can easily
show that λ0n > 0 for all n large enough. Since vn0 ∈M0, we have Π(vn0 ) = vn10(a) 6=
0. Thus

lim
t→∞

‖v̂n1 (t, ·)‖ = lim
t→∞

‖vn10e
λ0nt‖ =∞

and hence it follows from (19) that

lim
t→∞

‖vn1 (t, ·)‖ ≥ lim
t→∞

‖v̂n1 (t, ·)‖ =∞.

This contradicts with (18) and the proof is complete.

4.4. Stability of the endemic equilibrium P ∗. As noted earlier, P ∗ exists if
and only if R0 > 1.

Theorem 4.10. The endemic equilibrium P ∗ is locally asymptotically stable if R0 >
1 and µ > δ.

Proof. The characteristic equation of (1) at the endemic equilibrium is

SK̂(λ) = 1 +

∫∞
0
β(a)i(a)da

λ+ µ

(
1− δK̂1(λ)

λ+ µ+ δ

)
or

K̂(λ)

K
= 1 +

∫∞
0
β(a)i(a)da

λ+ µ

(
1− δK̂1(λ)

λ+ µ+ δ

)
(21)

as S = 1/K. To show that P ∗ is locally asymptotically stable if R0 > 1, it suffices
to show that all roots of (21) have negative real parts. The proof is based on the
observation that roots of (21) depend continuously on δ. We complete the proof in
three steps.
Step 1. Show that (21) with δ = 0 has no roots with nonnegative real parts. When
δ = 0, (21) reduces to

K̂(λ)

K
= 1 +

∫∞
0
β(a)i(a)da

λ+ µ
. (22)

By way of contradiction, assume that (22) has a root λ0 = u0 + iv0 with u0 ≥ 0.
Then substitute λ0 into (22) and equate the real parts to get∫∞

0
β(a)π(a)e−(µ+u0)a cos(v0a)da

K
= 1 +

(µ+ u0)
∫∞

0
β(a)i(a)da

(u0 + µ)2 + v2
0

,
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which is clearly impossible as the left hand side is less than 1 while the right hand
side is larger than 1.
Step 2. Show that (21) has no roots on the imaginary axis. Again, by way of
contradiction, suppose that iw is a root of (23). For the simplicity of notation,
denote

∫∞
0
β(a)i(a)da by C. Then we have

λ+ µ+ C = (λ+ µ)S̄K̂(λ) + C
δK̂1(λ)

λ+ µ+ δ
. (23)

Then

µ+ C + iw = (iw + µ)S̄
∫∞

0
β(a)π(a)e−µae−iwada

+
Cδ
∫∞

0
k(a)π(a)e−µae−iwada

iw + µ+ δ
.

(24)

Note that the modulus of the left hand side of (24) is
√

(µ+ C)2 + w2 while the
modulus of the right hand side of it is∣∣∣∣∣(iw + µ)S̄

∫ ∞
0

β(a)π(a)e−µae−iwada+
Cδ
∫∞

0
k(a)π(a)e−µae−iwada

iw + µ+ δ

∣∣∣∣∣
≤

√
µ2 + w2 +

Cδ√
(µ+ δ)2 + w2

≤
√
µ2 + w2 +

Cδ√
µ2 + w2

=

√
µ2 + w2 +

C2δ2

µ2 + w2
+ 2Cδ

<
√

(µ+ C)2 + w2 when µ > δ.

Thus we have a contradiction and this proves that (21) has no roots on the imaginary
axis.
Step 3. Show all roots of (21) has negative real parts. By way of contradiction,
suppose that (21) has a root with nonnegative real part. Then the real part of it
must be positive by the result of Step 2. By the continuous dependence of roots
of (21) on δ, there exists a δ0 ∈ (0, δ) such that (21) with δ = δ0 has a root on the
imaginary axis, a contradiction to the result in Step 2 again. This completes the
proof.

Finally, we study the global stability of P ∗. The following result can be easily
proved by applying Theorem 4.9 and Lemma 3.1 of [16].

Lemma 4.11. There exist constants M > ε > 0 such that for each complete orbit
 0

v1

 ,

 v2

v3


t∈R

of U in A0 we have

ε ≤ S(t), R(t),

∫ ∞
0

β(a)i(t, a)da ≤M for t ∈ R.

By using Volterra’s formulation of the solution, we have

i(t, a) = B(t− a)e−µaπ(a),
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where B(t) = S(t)
∫∞

0
β(a)i(t, a)da. Furthermore,

i(t, a)

i(a)
=
B(t− a)

i(0)
=
S(t− a)

∫∞
0
β(τ)i(t− τ, τ)dτ

i(a)

and hence
ε2

i(0)
≤ i(t, a)

i(a)
≤ M2

i(0)
.

The following result tells us that P ∗ is globally asymptotically stable under some
additional conditions.

Theorem 4.12. Let R0 > 1 and δ < µ. If µS > δR and k(a) = k, then the
endemic equilibrium P ∗ is globally asymptotically stable.

Proof. By Theorem 4.10, it suffices to show that P ∗ is globally attractive. This is
achieved by using the Lyapunov functional approach. To construct the Lyapunov
functional, we first introduce a function g := (0,∞) 3 u 7→ u − 1 − lnu. It is well
known that g is nonnegative and attains its minimum value 0 only at u = 1. Also,
for the simplicity of notation, we denote x = S/S and z = R/R. Then we construct
the Lyapunov functional as follows,

U(t) = US(t) + Ui(t) + UR(t),

where US(t) = g(x), Ui(t) =
∫∞

0
Θ(a)g( i(t,a)

i(a)
)da, Θ(a) =

∫∞
a
β(l)i(l)dl, UR(t) =

δ(R(t)−R)2/(2kS
2
).

First, we have

dUS(t)

dt
=

(
1− 1

x

)
1

S

dS

dt

=

(
1− 1

x

)
1

S

(
Λ− µS − S(t)

∫ ∞
0

β(a)i(t, a)da+ δR

)
=

(
1− 1

x

)
1

S

[(
µS + S

∫ ∞
0

β(a)i(t, a)da− δR
)

−µS − S(t)

∫ ∞
0

β(a)i(t, a)da+ δR

]
= −µ

(
1− 1

x

)
(x− 1) +

δR

S

(
1− 1

x

)
(z − 1)

+

∫ ∞
0

β(a)i(a)

(
1− 1

x
− xi(t, a)

i(a)
+
i(t, a)

i(a)

)
da.

Then due to the integral transformation and character of Θ(a) we have

dUi
dt

=

∫ ∞
0

β(a)i(a)

[
i(t, 0)

i(0)
− ln

i(t, 0)

i(0)
− i(t, a)

i(a)
+ ln

i(t, a)

i(a)

]
da.

Note that∫∞
0
β(a)i(a)

(
i(t,0)

i(0)
− x i(t,a)

i(a)

)
da = i(t,0)

i(0)

∫∞
0
β(a)i(a)da− x

∫∞
0
β(a)i(t, a)da

=
i(t, 0)

S
− i(t, 0)

S
= 0.
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Thus

d(US(t) + Ui(t))

dt
= −µ

(
1− 1

x

)
(x− 1) +

δR

S

(
1− 1

x

)
(z − 1)

+

∫ ∞
0

β(a)i(a)

[
1− 1

x
− ln

i(t, 0)

i(0)
+ ln

i(t, a)

i(a)

]
da

= −µ
(

1− 1

x

)
(x− 1) +

δR

S

(
1− 1

x

)
(z − 1)

−
∫ ∞

0

β(a)i(a)

[
g

(
1

x

)
+ g

(
x
xi(t, a)i(0)

i(a)i(t, 0)

)]
da.

Moreover, it follows from k(a) = k, Λ
µ = S + µ+δ+k

k R, and I(t) =
∫∞

0
i(t, a)da =

Λ
µ − S(t)−R(t) that

dUR(t)

dt
=

δ

kS
2 (R(t)−R)

[
k

(
Λ

µ
− S(t)−R(t)

)
− (µ+ δ)R(t)

]
=

δ

kS
2 (R(t)−R)[−k(S(t)− S)− (µ+ δ + k)(R(t)−R)]

= −δR
S

(z − 1)(x− 1)− δR
2
(µ+ δ + k)

kS
(z − 1)2.

Therefore,

dU(t)

dt
= −µ

(
1− 1

x

)
(x− 1) +

δR

S
(z − 1)

(
2− x− 1

x

)
−δR

2

kS
(µ+ k + δ)(z − 1)2

−
∫ ∞

0

β(a)i(a)

[
g

(
1

x

)
+ g

(
x
i(t, a)

i(a)

i(0)

i(t, 0)

)]
da

=

[
µ+

δR

S
(z − 1)

](
2− x− 1

x

)
− δR

2

kS
(µ+ k + δ)(z − 1)2

−
∫ ∞

0

β(a)i(a)

[
g

(
1

x

)
+ g

(
x
i(t, a)

i(a)

i(0)

i(t, 0)

)]
da

≤
[
µ− δR

S

](
2− x− 1

x

)
− δR

2

kS
(µ+ k + δ)(z − 1)2

−
∫ ∞

0

β(a)i(a)

[
g

(
1

x

)
+ g

(
x
i(t, a)

i(a)

i(0)

i(t, 0)

)]
da

≤ 0.

Let M be the largest invariant set of {(S(t), i(t, a), R(t)) : dU(t)
dt = 0}. We show

that M = {P ∗}. Obviously, {P ∗} ⊆ M . Now, since g(u) = 0 if and only if u = 1,

we have that dU(t)
dt = 0 if and only if

S(t) = S, R(t) = R, and
i(t, a)

i(a)

i(0)

i(t, 0)
= 1 for a ∈ (0,∞). (25)
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Then dS(t)
dt = 0. This, combined with (25), yields

0 =
dS

dt
= Λ− µS − S

∫ ∞
0

β(a)i(t, a)da+ δR

= S

∫ ∞
0

β(a)(i(a)− i(t, a))da

= S

∫ ∞
0

β(a)(i(a)− i(t, 0)e−µaπ(a))da

= S

∫ ∞
0

β(a)i(a)da− i(t, 0)S

∫ ∞
0

β(a)e−µaπ(a)da

= i(0)− i(t, 0),

or i(t, 0) = i(0). It follows from (25) that i(t, a) = i(a) for a ∈ (0,∞). This proves
that M ⊆ {P ∗}. Therefore, M = {P ∗} and it follows that P ∗ is globally attractive.
This completes the proof.

5. Discussion. In the study of the global behavior of diseases, prevalence has
played a vital role on predicting the dynamics of the disease transmission in the long
run and taking more efficient control measures such as vaccination and curetment
for immunization in the communicable diseases. In particular, the global stability
of the epidemic model with infection age becomes much more interesting from the
realistic views to theoretical views.

In this paper, we obtain the global asymptotic stability of the disease free equi-
librium P0 by using integral semigroup theory and fluctuation lemma, that is, the
disease will die out when the basic reproduction number R0 < 1. When R0 > 1,
the disease is persistent and the endemic equilibrium is also globally asymptotically
stable under some additional conditions.

Let’s reexamine the global stability conditions on the endemic equilibrium. It is
easy to see from the expressions of S, i(0), and R that

µ− δR

S
= µ− δi(0)K1

(µ+ δ)S
= µ

(
1− δK1

µ+ δ

R0 − 1

1− δK1

µ+δ

)

= µ
µ+ δ − δK1R0

µ+ δ(1−K1)
=

µ

µ+ δ(1−K1)
[µ− δ(K1R0 − 1)].

Hence µ− δR
S
> 0 is equivalent to δ ∈ R+ if 1 < R0 ≤ 1

K1
or δ ∈ [0, δ] , [0, µ

K1R0−1 ]

if R0 >
1
K1

. In particular, if k(a) = k, then K1 = k
µ+k . It follows that the disease

will eventually tend to the endemic equilibrium if the basic reproduction number
lies in the interval determined by the death rate and the cure rate for any rate of
immunity loss and any duration of the infection; if the basic reproduction number
is larger than 1

K1
then there exists a maximal rate of immunity loss which blends

the stability of the endemic equilibrium.
To illustrate our theoretical results, we choose Λ = 0.16, k(a) = 1.3, µ = 0.0125,

δ = 0.02. First, let

β(a) =

 0.17, a ≥ 0.065

0, 0 ≤ a ≤ 0.065.
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Figure 1. The global stability of the endemic equilibrium with
stochastic initial data

Then we obtain R0 = 1.5223 > 1/K1 = 1.0096 and δ < δ = 0.026. From
Theorem 4.12, the endemic equilibrium P∗ is globally asymptotically stable (see
Fig. 1(a)).

Next, let

β(a) =

 0.112, a ≥ 0.065,

0, 0 ≤ a ≤ 0.065.

It is easy to obtain R0 = 1.0029 < 1/K1 = 1.0096. By Theorem 4.12 again, the
endemic equilibrium is globally stable (see Fig. 1(b)).
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[1] À. Calsina, J. M. Palmada and J. Ripoll, Optimal latent period in a bacteriophage population

model structured by infection-age, Math. Models Methods Appl. Sci., 21 (2011), 693–718.

[2] C. Castillo-Chavez et al., Epidemiological models with age structure, proportionate mixing,
and cross-immunity, J. Math. Bioi., 27 (1989), 233–258.

[3] B. Buonomo and S. Rionero, On the Lyapunov stability for SIRS epidemic models with

generalized nonlinear incidence rate, Appl. Math. Comput., 217 (2010), 4010–4016.
[4] A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic

model with external supplies, Nonlineaity, 24 (2011), 2891–2911.

[5] Z. Feng, M. Iannelli and F. A. Milner, A two-strain tuberculosis model with age of infection,
SIAM. J. Appl. Math., 62 (2002), 1634–1656.

[6] D. F. Francis et al., Infection of chimpanzees with lymphadenopathy-associated virus, Lancet,

2 (1984), 1276–1277.
[7] H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Springer-

Verlag, Berlin, 1984.
[8] W. M. Hirsch, H. Hanisch and J.-P. Gabriel, Differential equation models of some parasitic

infections: Methods for the study of asymptotic behavior, Comm. Pure Appl. Math., 38

(1985), 733–753.
[9] J. M. Hyman and J. Li, Infection-age structured epidemic models with behavior change or

treatment, J. Biol. Dyn., 1 (2007), 109–131.

[10] H. Inaba and H. Sekine, A mathematical model for Chagas disease with infection-age-
dependent infectivity, Math. Biosci., 190 (2004), 39–69.

[11] A. Lahrouz et al., Complete global stability for an SIRS epidemic model with generalized

non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519–6525.
[12] J. M. A. Lange et al., Persistent HIV antigenaemia and decline of HIV core antibodies asso-

ciated with transition to AIDS, British Medical J., 293 (1986), 1459–1462.

[13] J. Liu and Y. Zhou, Global stability of an SIRS epidemic model with trasport-related infection,
Chaos Solitons Fractals, 40 (2009), 145–158.

[14] Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z.
Angew. Math. Phys., 62 (2011), 191–222.

[15] P. Magal, Compact attrators for time-periodic age-structured population models, Electron.

J. Differntial Equations, 2001 (2001), 35 pp.
[16] P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov fucntional and global asymptoticalc

stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140.

[17] P. Magal and X.-Q. Zhao, Global attractors in uniformly persistent dynamical systems, SIAM
J. Mah. Anal., 37 (2005), 251–275.

[18] M. Martcheva and S. S. Pilyugin, The role of coinfection in multidisease dynamics, SIAM J.
Appl. Math., 66 (2006), 843–872.

[19] C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity

and infinite delay, Math. Biosci. Eng., 6 (2009), 603–610.

[20] C. Pedersen et al., Temporal relation of antigenaemia and loss of antibodies to core core
antigens to development of clinical disease in HIV infection, British Medical J., 295 (1987),

567–569.
[21] S. Z. Salahuddin et al., HLTV-III in symptom-free seronegative persons, Lancet, 2 (1984),

1418–1420.

[22] H. R. Thieme, Semiflows generated by Lipschitz pertrubations of non-densely defined opera-
tors, Differential Integral Equations, 3 (1990), 1035–1066.

[23] H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in Advances in Math-

ematical Population Dynamics—Molecules, Cells and Man (eds. O. Arino, D. Axelrod and
M. Kimmel), World Sci. Publ., (1997), 691–711.

[24] H. R. Thieme and C. Castillo-Chavez, How may infection-age-dependent infectivity affect the

dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53 (1993), 1447–1479.
[25] J.-Y. Yang, X.-Z. Li and M. Martcheva, Global stability of a DS-DI epidemic model with age

of infection, J. Math. Anal. Appl., 385 (2012), 655–671.

http://www.ams.org/mathscinet-getitem?mr=MR2795503&return=pdf
http://dx.doi.org/10.1142/S0218202511005180
http://dx.doi.org/10.1142/S0218202511005180
http://dx.doi.org/10.1142/S0218202511005180
http://dx.doi.org/10.1142/S0218202511005180
http://www.ams.org/mathscinet-getitem?mr=MR1000090&return=pdf
http://dx.doi.org/10.1007/BF00275810
http://dx.doi.org/10.1007/BF00275810
http://dx.doi.org/10.1007/BF00275810
http://dx.doi.org/10.1007/BF00275810
http://www.ams.org/mathscinet-getitem?mr=MR2739642&return=pdf
http://dx.doi.org/10.1016/j.amc.2010.10.007
http://dx.doi.org/10.1016/j.amc.2010.10.007
http://dx.doi.org/10.1016/j.amc.2010.10.007
http://dx.doi.org/10.1016/j.amc.2010.10.007
http://www.ams.org/mathscinet-getitem?mr=MR2842101&return=pdf
http://dx.doi.org/10.1088/0951-7715/24/10/012
http://dx.doi.org/10.1088/0951-7715/24/10/012
http://dx.doi.org/10.1088/0951-7715/24/10/012
http://dx.doi.org/10.1088/0951-7715/24/10/012
http://www.ams.org/mathscinet-getitem?mr=MR1918570&return=pdf
http://dx.doi.org/10.1137/S003613990038205X
http://dx.doi.org/10.1137/S003613990038205X
http://www.ams.org/mathscinet-getitem?mr=MR766910&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR812345&return=pdf
http://dx.doi.org/10.1002/cpa.3160380607
http://dx.doi.org/10.1002/cpa.3160380607
http://dx.doi.org/10.1002/cpa.3160380607
http://dx.doi.org/10.1002/cpa.3160380607
http://www.ams.org/mathscinet-getitem?mr=MR2286913&return=pdf
http://dx.doi.org/10.1080/17513750601040383
http://dx.doi.org/10.1080/17513750601040383
http://dx.doi.org/10.1080/17513750601040383
http://dx.doi.org/10.1080/17513750601040383
http://www.ams.org/mathscinet-getitem?mr=MR2067826&return=pdf
http://dx.doi.org/10.1016/j.mbs.2004.02.004
http://dx.doi.org/10.1016/j.mbs.2004.02.004
http://dx.doi.org/10.1016/j.mbs.2004.02.004
http://dx.doi.org/10.1016/j.mbs.2004.02.004
http://www.ams.org/mathscinet-getitem?mr=MR2879132&return=pdf
http://dx.doi.org/10.1016/j.amc.2011.12.024
http://dx.doi.org/10.1016/j.amc.2011.12.024
http://dx.doi.org/10.1016/j.amc.2011.12.024
http://dx.doi.org/10.1016/j.amc.2011.12.024
http://www.ams.org/mathscinet-getitem?mr=MR2517923&return=pdf
http://dx.doi.org/10.1016/j.chaos.2007.07.047
http://dx.doi.org/10.1016/j.chaos.2007.07.047
http://www.ams.org/mathscinet-getitem?mr=MR2786149&return=pdf
http://dx.doi.org/10.1007/s00033-010-0088-x
http://dx.doi.org/10.1007/s00033-010-0088-x
http://www.ams.org/mathscinet-getitem?mr=MR1863784&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2674945&return=pdf
http://dx.doi.org/10.1080/00036810903208122
http://dx.doi.org/10.1080/00036810903208122
http://dx.doi.org/10.1080/00036810903208122
http://dx.doi.org/10.1080/00036810903208122
http://www.ams.org/mathscinet-getitem?mr=MR2172756&return=pdf
http://dx.doi.org/10.1137/S0036141003439173
http://dx.doi.org/10.1137/S0036141003439173
http://www.ams.org/mathscinet-getitem?mr=MR2216723&return=pdf
http://dx.doi.org/10.1137/040619272
http://dx.doi.org/10.1137/040619272
http://www.ams.org/mathscinet-getitem?mr=MR2549509&return=pdf
http://dx.doi.org/10.3934/mbe.2009.6.603
http://dx.doi.org/10.3934/mbe.2009.6.603
http://dx.doi.org/10.3934/mbe.2009.6.603
http://dx.doi.org/10.3934/mbe.2009.6.603
http://www.ams.org/mathscinet-getitem?mr=MR1073056&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1634223&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1239414&return=pdf
http://dx.doi.org/10.1137/0153068
http://dx.doi.org/10.1137/0153068
http://dx.doi.org/10.1137/0153068
http://dx.doi.org/10.1137/0153068
http://www.ams.org/mathscinet-getitem?mr=MR2834841&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2011.06.087
http://dx.doi.org/10.1016/j.jmaa.2011.06.087
http://dx.doi.org/10.1016/j.jmaa.2011.06.087
http://dx.doi.org/10.1016/j.jmaa.2011.06.087


SIRS MODEL WITH INFECTION AGE 469

[26] J.-Y. Yang et al., Intrinsic transmission global dynamics of tuberculosis with age structure,
Int. J. Biomath., 4 (2011), 329–346.

[27] Z. Zhang and J. Peng, A SIRS epiemic model with infection-age dependence, J. Math. Anal.

Appl., 331 (2007), 1396–1414.
[28] Y. Zhou et al., Modeling and prediction of HIV in China: Transmission rates structured by

infection ages, Math. Biosci. Eng., 5 (2008), 403–418.

Received November 03, 2012; Accepted October 24, 2013.

E-mail address: ychen@wlu.ca (YC)

E-mail address: yangjunyuan00@126.com (JY)

E-mail address: zhafq@263.net (FZ)

http://www.ams.org/mathscinet-getitem?mr=MR2845203&return=pdf
http://dx.doi.org/10.1142/S1793524511001222
http://dx.doi.org/10.1142/S1793524511001222
http://www.ams.org/mathscinet-getitem?mr=MR2313721&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2006.09.061
http://dx.doi.org/10.1016/j.jmaa.2006.09.061
http://www.ams.org/mathscinet-getitem?mr=MR2494036&return=pdf
http://dx.doi.org/10.3934/mbe.2008.5.403
http://dx.doi.org/10.3934/mbe.2008.5.403
http://dx.doi.org/10.3934/mbe.2008.5.403
http://dx.doi.org/10.3934/mbe.2008.5.403
mailto:ychen@wlu.ca (YC)
mailto:yangjunyuan00@126.com (JY)
mailto:zhafq@263.net (FZ)

	1. Introduction
	2. The model formulation
	3. Existence of equilibria
	4. Stability of equilibria
	4.1. Linearized systems and their characteristic equations
	4.2. Stability of the disease-free equilibrium P0
	4.3. Persistence
	4.4. Stability of the endemic equilibrium P*

	5. Discussion
	Acknowledgments
	REFERENCES

