Citation: Shinji Nakaoka, Hisashi Inaba. Demographic modeling of transient amplifying cell population growth[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 363-384. doi: 10.3934/mbe.2014.11.363
[1] | Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098 |
[2] | Juan Pablo Aparicio, Carlos Castillo-Chávez . Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences and Engineering, 2009, 6(2): 209-237. doi: 10.3934/mbe.2009.6.209 |
[3] | Bethan Morris, Lee Curtin, Andrea Hawkins-Daarud, Matthew E. Hubbard, Ruman Rahman, Stuart J. Smith, Dorothee Auer, Nhan L. Tran, Leland S. Hu, Jennifer M. Eschbacher, Kris A. Smith, Ashley Stokes, Kristin R. Swanson, Markus R. Owen . Identifying the spatial and temporal dynamics of molecularly-distinct glioblastoma sub-populations. Mathematical Biosciences and Engineering, 2020, 17(5): 4905-4941. doi: 10.3934/mbe.2020267 |
[4] | Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert . Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences and Engineering, 2013, 10(1): 1-17. doi: 10.3934/mbe.2013.10.1 |
[5] | Frédérique Clément, Béatrice Laroche, Frédérique Robin . Analysis and numerical simulation of an inverse problem for a structured cell population dynamics model. Mathematical Biosciences and Engineering, 2019, 16(4): 3018-3046. doi: 10.3934/mbe.2019150 |
[6] | Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390 |
[7] | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281 |
[8] | Jacques Demongeot, Pierre Magal . Population dynamics model for aging. Mathematical Biosciences and Engineering, 2023, 20(11): 19636-19660. doi: 10.3934/mbe.2023870 |
[9] | Cristina Anton, Alan Yong . Stochastic dynamics and survival analysis of a cell population model with random perturbations. Mathematical Biosciences and Engineering, 2018, 15(5): 1077-1098. doi: 10.3934/mbe.2018048 |
[10] | Katarzyna Pichór, Ryszard Rudnicki . Stochastic models of population growth. Mathematical Biosciences and Engineering, 2025, 22(1): 1-22. doi: 10.3934/mbe.2025001 |
[1] | Bull. Math. Biol., 73 (2011), 116-150. |
[2] | Biophys. J., 7 (1967), 329-351. |
[3] | Nat. Rev. Mol. Cell. Biol., 10 (2009), 207-217. |
[4] | Bull. Math. Biol., 68 (2006), 1011-1031. |
[5] | Cambridge Monographs on Applied and Computational Mathematics, 15, Cambridge University Press, Cambridge, 2004. |
[6] | Immunol. Rev., 216 (2007), 119-129. |
[7] | J. Immunol., 170 (2003), 4963-4972. |
[8] | Cell. Res., 10 (2000), 179-192. |
[9] | Population Studies, 37 (1983), 75-89. |
[10] | Grune and Stratton, 1959. |
[11] | J. Immunol., 179 (2007), 950-957. |
[12] | Nat. Immunol., 1 (2000), 239-244. |
[13] | Journal of Computational Physics, 22 (1976), 403-434. |
[14] | Math. Biosci., 86 (1987), 67-95. |
[15] | Proc. Natl. Acad. Sci. USA, 106 (2009), 13457-13462. |
[16] | Proc. Natl. Acad. Sci. USA, 104 (2007), 5032-5037. |
[17] | Working Paper Series 9, Institute of Population Problems, Tokyo, 1992. |
[18] | Math. Popul. Studies, 1 (1988), 49-77. |
[19] | J. Math. Biol., 65 (2012), 309-348. |
[20] | Math. Biosci., 216 (2008), 77-89. |
[21] | J. Math. Biol., 1 (1974/75), 17-36. |
[22] | J. Theor. Biol., 229 (2004), 455-476. |
[23] | J. Theor. Biol., 215 (2002), 201-213. |
[24] | J. Math. Biol., 54 (2007), 57-89. |
[25] | Theor. Biol. Med. Model., 4 (2007). |
[26] | Cambridge Studies in Mathematical Biology, 8, Cambridge University Press, Cambridge, 1989. |
[27] | Proc. Edinburgh. Math. Soc., 44 (1926), 98-130. |
[28] | Bull. Math. Biol., 74 (2012), 300-326. |
[29] | Nature, 441 (2006), 1068-1074. |
[30] | Cell, 132 (2008), 598-611. |
[31] | J. Comput. Appl. Math., 177 (2005), 269-286. |
[32] | 8th Edition, Immunobiology: The Immune System (Janeway), Garland Science, 2012. |
[33] | J. Math. Biol., 66 (2013), 807-835. |
[34] | Methods Mol. Biol., 296 (2005), 95-112. |
[35] | Nat. Immunol., 2 (2001), 925-931. |
[36] | in Studies in Mathematical Biology Part II: Populations and Communities (ed. S. Levin), Studies in Mathematical Biology, 16, The Mathematical Association of America, Washington, D.C., 1978, 389-410. |
[37] | Acta Pathol. Microbiol. Scand., 41 (1957), 161-182. |
[38] | Proc. Natl. Acad. Sci. USA, 70 (1973), 1263-1267. |
[39] | Journal of Statistical Software, 33 (2010), 1-25. |
[40] | Publ. Res. Inst. Math. Sci., 9 (1973/74), 721-741. |
[41] | Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, 2003. |
[42] | SIAM J. Appl. Math., 57 (1997), 1281-1310. |
[43] | BMC Bioinformatics, 8 (2007). |
[44] | PLoS One, 5 (2010), e12775. |
1. | Christian A. Yates, Matthew J. Ford, Richard L. Mort, A Multi-stage Representation of Cell Proliferation as a Markov Process, 2017, 79, 0092-8240, 2905, 10.1007/s11538-017-0356-4 | |
2. | Hisashi Inaba, 2017, Chapter 2, 978-981-10-0187-1, 75, 10.1007/978-981-10-0188-8_2 | |
3. | A. Golubev, Applications and implications of the exponentially modified gamma distribution as a model for time variabilities related to cell proliferation and gene expression, 2016, 393, 00225193, 203, 10.1016/j.jtbi.2015.12.027 |