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Abstract. Quantitative measurement for the timings of cell division and
death with the application of mathematical models is a standard way to esti-
mate kinetic parameters of cellular proliferation. On the basis of label-based
measurement data, several quantitative mathematical models describing short-
term dynamics of transient cellular proliferation have been proposed and ex-
tensively studied. In the present paper, we show that existing mathematical

models for cell population growth can be reformulated as a specific case of gen-
eration progression models, a variant of parity progression models developed
in mathematical demography. Generation progression ratio (GPR) is defined
for a generation progression model as an expected ratio of population increase
or decrease via cell division. We also apply a stochastic simulation algorithm
which is capable of representing the population growth dynamics of transient
amplifying cells for various inter-event time distributions of cell division and
death. Demographic modeling and the application of stochastic simulation
algorithm presented here can be used as a unified platform to systematically
investigate the short term dynamics of cell population growth.

1. Introduction. The kinetic balance between inflow and outflow of cells con-
tributes to maintain tissue homeostasis. A stem cell possesses self-renewal ability
to produce a copy (copies) of itself by self-renewal cell division for some cases [29].
By differentiating cell division, a stem cell population generates transient amplifying
progenitor cell(s) [30]. Although progenitor cells are generally capable of undergo-
ing at most a finite number of cell divisions, for epidermal cells as an example, the
mass population size is maintained by active and rapid proliferation of progenitor
cells [3]. Cellular proliferation can occur if a cell receives stimulus such as growth
factors and stress. For example, naive T cells are activated and then proliferate
after receiving appropriate signals via T cell receptors from antigen presenting cells
[32].

At a homeostatic state, the number of T lymphocytes is maintained at a con-
stant level in adult individuals. This fact indicates that the balance of cell division
and death should be tightly regulated. Note that a T lymphocyte population is
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composed of several heterogeneous sub-populations (effector, naive and memory) in
terms of biological function and cellular kinetics. One of most important biological
questions to address is how the balance of the population number is constantly main-
tained despite the population is heterogeneous. To address this question, tracking
experiments of T cells using quantitative labeling technique have been conducted
to reveal cellular kinetics [7]. Due to the development of label-based measurement
methods such as using Carboxy Fluorescein Succinimidyl Ester (in short, CFSE), it
is possible to track the time series process of cell division and death in a quantitative
manner. The number of cell divisions that a cell has experienced can be measured
by fluorescent intensity of CFSE.

Time-series quantitative measurement of cellular proliferation in combination
with the use of mathematical models enables us to estimate kinetic parameters of
cell population growth dynamics. By constructing mathematical models, quanti-
tative data representing cell population growth can be used to estimate growth
kinetic parameters of lymphocytes (the rate for cell division and death). Several
different types of mathematical models have been proposed and extensively in-
vestigated; formulation by way of stochastic birth death process [43, 28], partial
differential equations [25, 24, 1], a simple model [22], statistical model [12]. See [6]
for a comprehensive review on the study for estimating growth kinetic parameters
of lymphocytes by using CFSE. Most of previous mathematical studies regarding
CFSE labeling experiments provide the estimation of kinetic parameters based on
curve fitting with quantitative time series data representing the change of popula-
tion number. These estimated parameter values provide useful information since
it succeeded in quantitatively describing an effector phase of lymphocyte prolifera-
tion: the cell number increases due to clonal expansion, and then decreases due to
elevated apoptosis rate as the number of replications increases. Because mathemat-
ical models used for parameter fitting differ among previous studies, comparison of
results is made by careful biological interpretations. There exist possibilities that
mathematical study can further contribute to provide quantitative description of T
lymphocyte population dynamics especially in the following two issues.

One is to provide a flexible framework which allows to consider several different
types of cell division and death in a unified manner. In order to describe the growth
dynamics of a cell population, it is necessary to specify underlying stochastic rules
for inter-event time distributions of cell division and cell death. Most of mathe-
matical models considered in previous study are formulated by ordinary differential
equations. The formulation by way of ordinary differential equations postulates
that inter-event time distributions of cell division and cell death follow exponential
distributions. However, this implicit assumption is not always appropriate to repre-
sent the process of cellular proliferation. In fact, several quantitative measurement
experiments based on the tracking of cell division and cell death at the single cell
level suggest that inter-event time distributions of cell division can be well char-
acterized by long-tailed distributions such as log-normal distributions rather than
exponential distributions. Moreover, inter-event time distributions of cell death are
well approximated by Weibull distributions [15]. This implies that death rate of
cells is not constant as postulated in the formulation of ordinary differential equa-
tions or Poisson counting process. These observations suggest that an internal state
change may affect the dynamics of population growth.



DEMOGRAPHIC CELL POPULATION MODELS 365

Second is a proposal of useful quantity which quantitatively captures growth
dynamics of transient amplifying cell populations. Estimated parameters by them-
selves do not explicitly provide information of whether a cell population is growing
or not: population dynamics is determined by the balance between the increase by
cell division and loss by cell death. A quantity which represents the ratio between
successive two divisions can be useful to quantitatively capture the dynamics of a
growing or declining cell population.

To address the two issues above, in the present paper we would like to stress
that each existing quantitative mathematical model describing transient amplifying
cell population growth is always reformulated as a variant of the parity progression

model. The parity progression model was originally proposed in human demog-
raphy to describe the birth interval dynamics in human fertility [9, 18, 17]. The
parity progression model has been extensively used to estimate various demographic
indicators in practice. In the context of cell demography, we newly define the gen-

eration progression ratio (GPR) as an alternative concept to the well known basic
reproduction number R0, which provides a quantitative measure for the expected
number of daughter cells generated from their mother cell1.

The organization of this paper is as follows. In Section 2, we show that existing
quantitative mathematical models can be all seen as a specific case of the generation
progression model. We define the generation progression ratio and calculate it for
each specific cell population growth model. As an application, in Section 2.6, GPR
is calculated for some experiment on the single cell level cell tracking measurement
[15]. Finally, we make use of an algorithm developed in [33] to implement stochastic
simulations to represent the short term population growth dynamics of transient
amplifying cells. In Appendix, we show the relation between R0 and GPR by for-
mulating the generation progression model as a multi-group McKendrick equation
system.

2. Transient amplifying cell population growth models. Throughout this
paper, we consider population dynamics of transient amplifying cells. A schematic
representation of cell division and death is depicted in Figure 1.

2.1. Generation progression model. We describe the growth dynamics of a
transient amplifying cell population by a system of linear renewal equations. In
this paper, we assume that the number of divisions that a cell has experienced
defines the generation. The generation is a group of cells which have experienced
the same number of cell divisions. Transient amplifying cells are generally capable
of undergoing a finite number of cell divisions. Hence it is reasonable to assume
that there exist totally N +1 distinct generations (j = 0, 1, 2, ..., N). Let us denote
the state of source-type cells such as a stem cell population as the 0-th generation.
We distinguish the 0-th generation from the other generations because a stem cell
population or unstimulated resting cell population such as naive T cells can have
different proliferative kinetics from that of transient amplifying cells. Transition
from j-th generation to (j +1)-th generation occurs if a cell undergoes cell division
(j = 0, 1, ..., N − 1). It follows from the definition of the generation that there is
no transition from the j-th generation to the other generations other than j + 1

1In this paper, we use the term “generation” instead of “parity”, because “parity” denotes
the number of event an individual has experienced, but different from demographic context, cell
division here replaces mother cells by daughter cells, so it is not a parity progression process of an
individual.
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Figure 1. A schematic representation for population dynamics of
transient amplifying cells. There exists a maximum number of cell
division. A cell undergoes cell division to enter a next generation. A
cell will disappear due to cell death. See the main text for detailed
definition and explanation.

(j = 0, 1, 2, ..., N − 1). Although undivided transient amplifying progenitor cells
can be generated from a source type cells, in the present paper, we always assume
that there is no external recruitment of cells.

Let τ denotes the duration of a cell in a particular generation elapsed from the
time that the cell enters the current generation, so simply τ is called “age” of a cell.
Let λj(τ) denote the force of cell division which represents the rate of cell division.
Incidence probability of cell division Λj(τ) is defined as a probability of undergoing
cell division from j-th generation to (j+1)-th generation with the rate λj(τ) during
infinitesimal period (τ, τ +∆τ). Λj(τ) is mathematically formulated as

Λj(τ) := λj(τ) exp

(

−
∫ τ

0

λj(σ)dσ

)

. (2.1)

Assume that cells at j-th generation are removed due to cell death with the rate
µj(τ). Let Fj(τ) denote the survival probability of cells at j-th generation (j =
1, 2, ..., N):

Fj(τ) = exp

(

−
∫ τ

0

µj(σ)dσ

)

. (2.2)

Let bn(t) denote the cell population production rate (n = 0, 1, ..., N) at time t which
is an equivalent notation to the population birth rate in mathematical demography
and epidemiology. For n = 1, 2, ..., N , the explicit form of generation progression
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model is given by

bn(t) = 2

∫ t

0

Λn−1(τ)Fn−1(τ)bn−1(t− τ)dτ

= 2

∫ t

0

λn−1(τ) exp

(

−
∫ τ

0

{λn−1(σ) + µn−1(σ)}dσ
)

bn−1(t− τ)dτ, n ≥ 1.

(2.3)
where b0 is a given initial data. System (2.3) has already been proposed in [4] and
investigated in [44] in details2.

Hereafter we focus on different aspects of system (2.3) that have not been fully
investigated in the previous papers yet. Note that system (2.3) takes a quite similar
form of the parity progression model [18, 17, 9]. The difference between the parity
progression models and the generation progression model (2.3) for j = 1, 2, ..., N is
that factor “2” representing the number of daughter cells produced from a single
mother cell is multiplied in each equation of (2.3).

We define the generation progression ratio (GPR) at n-th generation which de-
scribes the expected number of daughter cells produced from a single mother cell at
n-th generation under given incidence probability of cell division Λn(τ) and survival
probability Fn(τ). The generation progression ratio is mathematically formulated
as

GPR(n) := 2

∫ ∞

0

Λn(τ)Fn(τ)dτ. (2.4)

By the definitions of Λn(τ) and Fn(τ), we find that

GPR(n) = 2

[

1−
∫ ∞

0

µn(τ) exp

(

−
∫ τ

0

{λn(σ) + µn(σ)}dσ
)

dτ

]

, (2.5)

which shows that the generation progression ratio is twice the probability that a
cell survive the n-th generation.

Moreover, generation progression ratio (2.4) represents the ratio between one
generation to the next generation. To see this aspect, define the size of generation
Pn by

Pn :=

∫ ∞

0

bn(t)dt. (2.6)

By integrating the both side of (2.3) from 0 to ∞ with respect to t and changing
the order of integration, we obtain that

Pn

Pn−1
= 2

∫ ∞

0

Λn(τ)Fn(τ)dτ = GPR(n), (2.7)

which shows that GPR gives the ratio of size of successive generations.
It follows from (2.7) that the population size would increase on average ifGPR(n)

> 1, whereas it would decrease on average if GPR(n) < 1. Hence the generation
progression ratio determines a threshold of expansion or shrink of population size
between generations.

However, it should be noted that the basic reproduction number R0 for total
cell population composed of N + 1 distinct generations is zero if N is finite (see
Appendix), so GPR is an index of reproductivity of each generation in the transient

2We know that our model presentation is rather formal, and it needs measure-theoretic for-
mulation in order to handle a probability density function as delta function (which corresponds
to “Type I” survival rate, see subsection 2.2). The reader may find a detailed argument for the
survival function in [41].
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phase. On the other hand, if N = ∞, limn→∞ GPR(n) is, if it exists, equivalent
to the basic reproduction number R0 for total cell population. This fact is a par-
ticular characteristics to transient amplifying cell populations because generation
in the present context is prescribed by the number of cell divisions that a cell has
experienced, and each “generation” is, in general, different from each other, so the
generation progression process is not necessarily a self-renewal process. On the other
hand, if we consider population dynamics of a stem cell population, reproduction
of a stem cell occurs via self-renewal. The basic reproduction number R0 of stem
cell populations is therefore defined as an expected number of daughter cells still
having self-renewal capability which are reproduced from a single stem cell during
its survival period and can be identified with mother cells. In order to distinguish
the basic reproduction number and the generation progression ratio, we remain to
use the notation of generation progression ratio to represent the expected fraction
of population expansion or shrink between two generations.

If both Λn(τ) and Fn(τ) are independent of generation number n, then generation
progression ratio (2.4) becomes independent of n. In the following subsections, we
do not explicitly write the dependence of n if it is not necessary.

2.2. Synchronous progression model. Assume that all cells divide synchronously
every time period T . This implies that the incidence probability of cell division is
given by the Dirac’s delta function

Λn(τ) = δ(τ − T ). (2.8)

Then the model for cell population growth is given by

bn(t) =2Fn−1(T )bn−1(t− T ), (n = 1, 2, ..., N). (2.9)

Note that system (2.9) defines a system of difference equations for each fixed time t.
We derive an explicit solution of (2.9) for a special case. Assume that the survival
probability of cells is independent of n and has the form of an exponential function
with rate parameter µ:

Fn(τ) = e−µτ . (2.10)

Consider the following special case for 0-th generation:

b0(t) = Ce−µt, 0 ≤ t ≤ T, (2.11)

where C represents the initial population size of 0-th generation. Then we obtain
the following explicit solution of (2.9):

bn(t) =C2
ne−µt, nT ≤ t ≤ (n+ 1)T.

=C(2e−µT )ne−µ(t−nT ), 0 ≤ t− nT ≤ T.
(2.12)

The GPR for (2.9) is calculated as

GPRsync =

∫ ∞

0

2δ(τ − T )Fn−1(τ)dτ

= 2e−µT .

(2.13)

The explicit solution (2.12) indicates that the population number exactly increases
or decreases with the generation progression ratio 2e−µT at every cell division (see
also the right panel of Figure 2). However, it is not reasonable to assume that all
cells synchronously undergo cell division. In the following subsections, we consider
different types of probability distribution for the inter-event time of cell division
and death.
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2.3. Single step constant progression model. Assume that inter-event time
distribution of cell division and death follow an exponential distribution with rate
parameter λ and µ, respectively. Then incidence probability of cell division Λn(τ)
and survival probability Fn(τ) at n-th generation are explicitly given by

Λn(τ) = λe−λτ , (2.14)

and

Fn(τ) = e−µτ . (2.15)

For 0-th generation, we assume that survival probability at 0-th generation is given
by an exponential function with rate parameter µ + λ. Let C denote the initial
population size. Then system (2.3) is rewritten as

b0(t) = Ce−(µ+λ)t,

bn(t) =

∫ t

0

2λe−(µ+λ)τbn−1(t− τ)dτ.
(2.16)

By changing variable τ to t − u and differentiating the both sides of (2.16) with
respect to t, the following ordinary differential equations are derived from (2.16):

d

dt
b0(t) = −(µ+ λ)b0(t),

d

dt
bn(t) = 2λbn−1(t)− (λ+ µ)bn(t) (n = 1, 2, ...N).

(2.17)

System (2.17) corresponds to the mathematical model proposed in Revy et al.

[35, 4]. Since cell division or cell death as an event occurs at a constant rate
and the event is represented by a single process, we call system (2.16) as single
step constant progression model. The generation progression ratio for single step
constant progression model (2.16) is calculated as

GPRsingle =

∫ ∞

0

2λe−(λ+µ)τdτ

= 2
λ

λ+ µ
.

(2.18)

The term λ
λ+µ in (2.18) represents the conditional probability that a cell survives in

a current generation and then transits to the next generation by cell division (see
also [41, page 11]). Hence the generation progression ratio (2.18) represents the
expected number of daughter cells reproduced from a mother cell.

2.4. Multi-step constant progression model. Since cell division process is com-
posed of sequential multiple sub-processes, it is reasonable to assume that cell divi-
sion process is further distinguished into several sequential steps. Assume that cell
division process can be described by m distinct sequential sub-processes. A natural
candidate to represent such inter-event time distribution of cell division is a gamma
distribution. The Gamma distribution with rate parameter λ and shape parameter
k (k = 1, 2, ...,m) is given by

Gk,λ(τ) :=











λkτk−1e−λτ

(k − 1)!
, (τ > 0)

0, (τ ≤ 0).

(2.19)
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An exponential distribution with rate parameter λ is derived from (2.19) as a special
case k = 1. We assume that the incidence probability of cell division and the survival
probability of cells at n-th generation are respectively given by

Λn(τ) = Gm,λ(τ) (m ≥ 2), (2.20)

and

Fn(τ) = e−µτ . (2.21)

For n ≥ 1 and k = 1, 2, ...,m − 1, let xn|k(t) denote the density of cells at n-th
generation in the k-th intermediate sub-process. The explicit form of xn|k(t) is
given by

xn|k(t) :=

∫ t

0

Gk,λ(τ)e
−µτ bn(t− τ)dτ. (2.22)

For m = 1, we set xn|0(t) = bn(t). In the similar manner to the linear chain trick
method [26], system (2.3) is reduced to the following system of ordinary differential
equations (k = 1, 2, ...,m− 1):

d

dt
b0(t) = −(µ+ λ)b0(t),

d

dt
bn(t) = 2λxn−1|m−1(t)− (µ+ λ)bn(t),

d

dt
xn−1|k(t) = λxn−1|k−1(t)− (µ+ λ)xn−1|k(t).

(2.23)

For m = 1, we obtain single step constant progression model (2.17).
The GPR for multi-step constant progression model (2.23) is given by

GPRmulti =

∫ ∞

0

2
λmτm−1

(m− 1)!
e−(µ+λ)τdτ

= 2

(

λ

λ+ µ

)m

, (m ≥ 1).

(2.24)

Finally we show that synchronous progression model (2.9) defined in subsection
2.2 can be derived as a limiting case of multi-step constant progression model
(2.23). More precisely, we consider a situation that there exist many sequential sub-
processes in cell division process, and the rate of transition from one sub-process
to another occurs rapidly. This situation can be represented as sufficiently large m
and λ in the Gamma-distribution (see also the left panel of Figure 4). Assume that
λ/m is constant. Let T denote the ratio of m to λ: λ = m/T . By applying the
method developed in [42, Appendix], we can show that

bn(t) =

∫ ∞

0

2Gm,λ(τ)Fn−1(τ)bn−1(t− τ)dτ

→ 2Fn−1(T )bn−1(t− T )

(2.25)

as m→ ∞. Correspondingly, the GPR for (2.23) converges to the GPR for (2.9) as
m→ ∞. In fact, by substituting λ = m/T into (2.24) and taking the limit m→ ∞,
we find that

2

(

λ

λ+ µ

)m

= 2

[

(

1 +
µT

m

)m/µT
]−µT

→ 2e−µT . (2.26)

Although synchronous progression model (2.9) seems to be less realistic, it can
be derived from multi-step constant progression model (2.23) as a limiting case
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provided that cell division process can be represented by fast and many sequential
sub-processes. The similar idea can be applied to another process in which a fixed
time interval as time delay is incorporated to represent an inter-event time (see the
next subsection).

2.5. Smith-Martin type model. Single step constant progression model (2.16)
does not account for the minimum fixed time required for accomplishing cell divi-
sion. Therefore quantitative estimation for growth kinetic parameters of cell division
by means of the single step constant progression model would become imprecise in
particular for slowly dividing cells. The mathematical model proposed by Smith
and Martin incorporates a fixed time interval required for accomplishing cell division
[38, 4, 11]. In the Smith-Martin type model, a cell division period is distinguished
into two phases, A-phase and B-phase. A-phase approximately corresponds to G1-
phase, whereas B-phase corresponds to the concatenation of S-phase, G2-phase and
M-phase of cell division. It is assumed that the transition from A-phase to B-phase
is a stochastic event. More precisely, it is assumed that the expected time to exit A-
phase and enter to B-phase follows an exponential distribution with rate parameter
λ. On the other hand, accomplishment of B-phase requires a fixed time T .

Let us derive the Smith-Martin type model from (2.3). Incidence probability of
cell division at n-th generation Λn(τ) is given by

Λn(τ) =

{

λe−λ(τ−T ), τ > T,

0, 0 ≤ τ ≤ T.
(2.27)

The survival probability of cells at n-th generation is given by an exponential func-
tion with rate parameter µ:

Fn(τ) = e−µτ . (2.28)

Let An(t) and Bn−1(t) denote the cell density at n-th generation in the A-phase
and B-phase, respectively. Note that An(t) and Bn−1(t) forms a pair (cf., [44]). For
0-th generation, we assume that b0(t) is given by an exponential function with rate
parameter λ+ µ. Then system (2.3) is deduced to

A0(t) = Ce−(µ+λ)t,

An(t) =

∫ t

T

2e−(λ+µ)(τ−T )e−µTλAn−1(t− τ)dτ, t > T.
(2.29)

We have replaced bn(t) with An(t) to keep consistency of notation. The subordinate
renewal equation for Bn(t) is defined as

Bn(t) =

∫ T

0

e−µτλAn(t− τ)dτ. (2.30)

By changing variable τ to t − u and differentiating the both sides of (2.29) and
(2.30), the Smith-Martin type model described by delay differential equations is
derived from (2.29) and (2.30):

d

dt
A0(t) = −(λ+ µ)A0(t),

d

dt
An(t) = 2λe−µTAn−1(t− T )− (λ+ µ)An(t),

d

dt
Bn(t) = λAn(t)− e−µTλAn(t− T )− µBn(t).

(2.31)
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If T = 0, then Smith-Martin type model (2.31) is reduced to ordinary differen-
tial equations. In particular, variable An(t) corresponds to single step constant
progression model (2.17).

The GPR for Smith-Martin type model (2.29) is given by

GPRSM =

∫ ∞

T

2λe−λ(τ−T )e−µτdτ

= 2
λ

λ+ µ
e−µT .

(2.32)

Note that the GPR for the Smith-Martin type model corresponds to the GPR for
single step constant progression model (2.18) multiplied with the survival probabil-
ity of cells in B-phase e−µT .

As shown in subsection 2.4, discrete-type time delay T can be derived from multi-
step constant progression model (2.23) as a limiting case if cell division process can
be represented as fast and many sequential sub-processes. Hence the Smith-Martin
type model can be approximated by multi-step constant progression model (2.23). A
major advantage of using multi-step constant progression model (2.23) is to flexibly
bridge two typical formulations for incidence probability of cell division: exponential
distribution and fixed time interval represented by a discrete-type time delay.

2.6. Hawkins’ quantitative measurements. In this subsection, we reproduce
the growth dynamics of a cell population studied in [15]. In subsections 2.2–2.5,
it is assumed that survival probabilities are described by exponential functions. In
single cell measurement experiments performed in Hawkins et al., the timings of cell
division and death are traced at the single cell level. Tracking data tor the timings
of cell division and death suggest that incidence probability of cell division is well
fitted by a log-normal distribution or Gamma distribution, whereas the survival
probability of the cell population is better fitted by a Weibull distribution or log-
normal distribution rather than exponential distributions. These observations imply
that the time required for accomplishing cell division considerably varies. Moreover,
age-dependent cell death would be more feasible than age-independent (constant
rate) cell death to describe death process of the population studied in [15].

Since incidence probability of cell division and survival probability have already
been determined in [15] by means of a model selection method, we directly substitute
them into generation progression model (2.3) with a slight modification. More
precisely, we assume that incidence probability of cell division at n-th generation
Λn(τ) is given by a log-normal distribution with average µn and variance σ2

n of the
form:

Λn(τ) =
1√

2πσnτ
exp

[

− (log τ − logµn)
2

2σ2
n

]

. (2.33)

According to the single cell level measurement experiments [15], the mean and
variance for the first-time cell division are given by µ0 = 37.21 and σ0 = 3.76,
respectively. On the other hand, the mean and variance for more than second cell
divisions are given by µn = 9.3 and σn = 2.54 (n ≥ 1), respectively. We assume
that survival probability of cells at n-th generation Fn(τ) is given by the Weibull
distribution of the form:

Fn(τ) = exp

[

−
(

dn+ τ

η

)m]

. (2.34)
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The explicit values of shape and rate parameters m and 1/η are given by m = 1.86
and η = 33.02, respectively. Note that in Figure 1I of the original paper [15],
survival probability curves for each generation are drawn. In Figure 1I of the original
paper, survival probability curves for more than 4th generations look exponential
curves, suggesting that a constant death rate may become dominant to determine
the survival of cells. Hence we assume that generation dependent death rate dn
is incorporated in (2.34). (2.34) is the survival probability of a three-parameters
Weibull distribution with shift parameter θ = −dn. Hence (2.34)) is defined for
τ ≥ −dn. However, to represent elevation of death rate across cell divisions, we
consider that τ ≥ 0. For numerical simulation in subsection 2.7, we set the explicit
value of d as d = 8.0.

Since the death rate of cells differs in each generation, the GPR varies accordingly.
The GPR for (2.3) with (2.33) and (2.34) is given by

GPRHawkins(n)

=

∫ ∞

0

2
1√

2πσnτ
exp

[

− (log τ − logµn)
2

2σ2
n

−
(

dn+ τ

η

)m]

dτ.
(2.35)

Since we do not know whether the right hand side of integration in (2.35) has
an analytic solution, we numerically compute the value of the GPR for totally
eight generations n = 1, 2, ..., 8 (see Table 2.6). The integration is solved by the
double exponential integration method [40]. The numerical computation results
indicate that the number of the population would increase on average until the
fourth generation. While the population number would decrease after the fifth
generation due to elevated death rate. We perform linear regression analysis to
estimate linear relationship between GPRs and generations. Let x and y denote the
continuous variable representing generations and GPRs, respectively. The data in
Table 2.6 are used to estimate the coefficients a and b of regression line y = ax+ b.
Estimated values for a and b are given by a = −0.2881 and b = 2.2538. The slope
a approximately represents the stepwise decline of proliferative ability of the cell
population across generations.

Since the experimental data is provided as a sum of cells in all generations, we
do not know when a cell population starts shrinking. According to the calculated
values of GPRs in Table 2.6, the cell population begins to decline from the fifth
division, since the calculated value of GPR for the fifth generation becomes less
than 1. In the experimental condition of [15], calculated values of GPRs suggest
that death of cell known as activation induced cell death may occur within five
times of replications. Since activation induced cell death in B cells is determined
by the complex interplay of cell survival and apoptosis signals [8], outcome can
change depending on experimental conditions. Calculation of GPRs can be inte-
grated to a mathematic-assisted practical in vitro assay which enables us to evaluate
the strength of BCR signaling, or the transcription level of BCL-2, a well known
transcription factor that acts as an anti-apoptotic effects to B cells.

2.7. Stochastic simulation. If time-series quantitative data such CFSE fluores-
cence intensity are available, then it becomes possible to estimate kinetic parameter
values of cellular proliferation by iteratively solve a system of differential equations
under an appropriate optimization method. In subsections 2.3–2.5, system of re-
newal equations is reduced to (delay) differential equations. For ordinary and delay
differential equations, several useful packages or softwares are available to approx-
imately solve differential equations [39]. Although there exist several numerical



374 SHINJI NAKAOKA AND HISASHI INABA

division number 1 2 3 4
GPR 1.967091475 1.78405824 1.43379878 1.04032324
division number 5 6 7 8
GPR 0.68503096 0.41084164 0.22503247 0.11281631

Table 1. Generation progression ratios for the Hawkins’ quanti-
tative measurement data.

integration methods to numerically solve renewal equations as a special class of the
second type Volterra integral equations [5, 31], to our knowledge, there are no prac-
tical packages which are directly applicable to generation progression model (2.3).
Hence a systematic approach to estimate kinetic parameter values of cellular prolif-
eration for a given system of (renewal) equations is difficult to undertake in practice.
Moreover, it is important to take into account for demographic stochasticity in cell
population growth if population size is small.

Recently, one of the authors developed an algorithm for implementing stochastic
simulation, called the individual-based Gillespie algorithm [33]. The individual-
based Gillespie algorithm can be applied to a fairly general class of structured
population models including age-structured population models. Because the Gille-
spie algorithm is a numerical representation of Poisson counting process [13], it is
not directly applicable to general counting process such as age-dependent death
process. The developed algorithm by the authors is capable of reproducing survival
curve of the Weibull type distribution [33]. In this subsection, we demonstrate that
for each generation progression model studied in subsections 2.2–2.6, the devel-
oped algorithm is applied to perform stochastic simulations by specifying incidence
probability of cell division Λn(τ) and survival probability Fn(τ).

To implement stochastic simulations for (2.3), the timings of cell division or death
should be calculated based on a given probability distribution for the inter-event
time distribution of cell division or cell death. The choice of an event (cell division
or death) that will occur next and the time step ∆t to proceed are determined
by the rule prescribed in the algorithm [33]. Basically, pseudo random variable to
determine the timing of cell division or death is calculated from a given probability
density function for cell division or death. If a cell at n-th generation is chosen to
undergo cell division, then two daughter cells appear at (n+ 1)-th generation, and
the number of cells at (n + 1)-th generation increases. While if a cell is chosen to
undergo apoptosis, the cell disappears and the number of cell in the corresponding
generation decreases. In each time-step procedure ∆t, every cell gets older.

On each left panel of each Figures 2–6, incidence probability of cell division Λn(τ)
and survival probability Fn(τ) are drawn (see also Table 2.7 as a summary of model
ingredients and GPRs). While on each right panel of Figures 2–6, we draw a sim-
ulation result for the corresponding specific generation progression model. In all
numerical simulations, we set N = 8 to specify the maximum number of cell di-
visions. Figure 2 represents a simulation result for synchronous progression model
(2.9) with the parameter values: C = 100 (initial population size), µ = 0.05 and
T = 10. Since all cells divide synchronously every time period T , the solution
of system (2.9) exhibits an artificial trajectory. Figure 3 represents a simulation
result of single step constant progression model (2.16) with the parameter values:
C = 100 , µ = 0.05 and λ = 0.1. In contrast to the result for synchronous pro-
gression model (2.9), no synchronous patterns are observed. Figure 4 represents
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a simulation result of multi-step constant progression model (2.3) with incidence
probability of cell division (2.20) and survival probability (2.21). Parameter values
are given as follows: C = 100, λ = 50 and m = 500. The numerical values of λ
and m are set sufficiently large enough to find the tendency of convergence to syn-
chronous progression model (2.9). In fact, Figure 4 exhibits a similar time-course
pattern as drawn in Figure 2. Figure 5 represents a simulation result of Smith-
Martin type model (2.29) with the parameter values: C = 100, µ = 0.025, λ = 0.1
and T = 10. Note that the timing of transition from A-phase to B-phase is deter-
mined by a random variable generated from an exponential distribution, while the
transition from B-phase to A-phase occurs after fixed duration T has past. Finally,
a simulation result of the generation progression model (2.3) with incidence proba-
bility of cell division (2.33) and survival probability (2.34) as adopted for Hawkins’
quantitative measurement data are drawn on Figure 6. The parameter values writ-
ten in subsection 2.6 are used to carry out numerical simulations. Although the
assumption postulated in survival probability of cells (2.34) is necessary to recon-
sider, the simulation result shows qualitatively good agreement with experimental
data (see Figure 1A of the original paper [15] in which cell population growth (blue
solid line) and accumulated cell death count (red solid line) for 150 hours starting
from 100 initial cells are drawn: Open access, available at the following website:
http://www.pnas.org/content/106/32/13457.figures-only).

The difference among stochastic simulations for specific models in subsections
2.2–2.6 shows the importance of inherent stochasticity in a cell-cycle phase. If cell-
cycle is precisely regulated such as for the egg of xenopus laevis (African clawed
frog) [34], the expected dynamics can be represented by synchronous model (Figure
2). On the other hand, if there is stochasticity in a cell cycle period, we observe
qualitatively different (exponential) growth curves depicted in Figures 3, 5 and 6.
Statistical representation of the incidence probability of cell division and death as
proposed in this paper provides a useful and versatile framework to compare the
effect of stochasticity that naturally exists in cell division and death.

model cell division survival probability GPR
synchronous (2.8): Dirac’s delta (2.10): Exponential 2e−µT

Single-step (2.14): Exponential (2.15): Exponential 2λ
λ+µ

Multi-step (2.20): Gamma (2.21): Exponential 2( λ
λ+µ )

m−1

Smith-Martin (2.27): Shifted exponential (2.28): Exponential 2λ
λ+µe

−µT

Hawkins (2.33): Log-normal (2.34): Weibull Table 2.6

Table 2. Comparison of incidence probability of cell division
Λn(τ) and survival probability Fn(τ) for different generation pro-
gression models with the generation progression ratio (GPR).

3. Discussion. We showed that several existing quantitative mathematical mod-
els can be reformulated as a generation progression model, a variant of parity pro-
gression models developed in the field of mathematical demography. In Section
2, we focused on several typical transient cell population growth models which
were proposed to estimate growth kinetics parameters for cellular proliferation of
lymphocytes. By specifying incidence probability of cell division Λn(τ) and sur-
vival probability Fn(τ), we showed that existing models described by differential

http://www.pnas.org/content/106/32/13457.figures-only
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Figure 2. Synchronous progression model (2.9). Left panel: in-
cidence probability of cell division Λn(τ) (red, solid-line) and sur-
vival probability Fn(τ) (green, dashed-line) are given by the Dirac’s
delta function and exponential function with rate parameter µ.
Right panel: stochastic simulation result. Each colored curve rep-
resents the population growth curve of cells at n-th generation (red:
n = 1, green: n = 2, blue: n = 3, aqua: n = 4, purple: n = 5,
yellow: n = 6, gray: n = 7, dashed black: total).
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Figure 3. The single step constant progression model (2.17). Left
panel: incidence probability of cell division Λn(τ) (red, solid-line)
and survival probability Fn(τ) (green, dashed-line) are given by
an exponential distribution with rate parameter λ and exponential
function with rate parameter µ. Right panel: stochastic simulation
result. Each colored curve represents the population growth curve
of cells at n-th generation (red: n = 1, green: n = 2, blue: n = 3,
aqua: n = 4, purple: n = 5, yellow: n = 6, gray: n = 7, dashed
black: total).
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Figure 4. Multi-step constant progression model (2.23). Left
panel: incidence probability of cell division Λn(τ) (red, solid-line)
and survival probability Fn(τ) (green, dashed-line) are given by
Gamma distribution with shape parameter m and rate parameter
λ, and exponential function with rate parameter µ. Red-colored
curves represent Gamma distributions with different parameters.
Solid line: m = 250 and λ = 250, dashed line: m = 500 and
λ = 500, dash-dotted line: m = 750 and λ = 750. Right panel:
stochastic simulation result. Each colored curve represents the pop-
ulation growth curve of cells at n-th generation (red: n = 1, green:
n = 2, blue: n = 3, aqua: n = 4, purple: n = 5, yellow: n = 6,
gray: n = 7, dashed black: total).

equations are equivalently reformulated as a specific case of generation progression
models. Hence it becomes possible to compare differences in terms of underly-
ing implicit assumptions among existing mathematical models as the differences in
terms of incidence probability of cell division and survival probability. Although
these considerations have already been discussed in [44] in part, we further showed
that single step constant progression model (2.17) and Smith-Martin type model
(2.29) can be derived from multi-step constant progression model (2.23). Moreover,
generation progression ratios (GPRs) were calculated for each generation. The gen-
eration progression ratio provides a quantitative estimate for the expected fraction
of population increase or decrease between two generations. We applied the sto-
chastic simulation method developed in [33] to numerically simulate the dynamics
of cell population growth for each generation progression model. In implementing
numerical computations to differential equations, a specific numerical integration
method should be chosen depending on the type of differential equations (ODEs,
DDEs or PDEs). While the stochastic simulation method presented in [33] is ap-
plicable to all generation progression models independent of the choice of a specific
numerical integration method. For the quantitative data investigated in subsection
2.6, it could be more reasonable to use stochastic simulations since demographic
stochasticity due to the low number of population size might be expected.
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Figure 5. Smith-Martin type model (2.31). Left panel: incidence
probability of cell division Λn(τ) (red, solid-line) and survival prob-
ability Fn(τ) (green, dashed-line) are given by shifted exponential
distribution with rate parameter λ, and exponential function with
rate parameter µ. Right panel: stochastic simulation result. Each
colored curve represents the population growth curve of cells at n-
th generation (red: n = 1, green: n = 2, blue: n = 3, aqua: n = 4,
purple: n = 5, yellow: n = 6, gray: n = 7, dashed black: total).
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Figure 6. Generation progression model (2.3) adopted for
Hawkins’ quantitative measurement data. Left panel: incidence
probability of cell division Λn(τ) (red, solid-line) and survival prob-
ability Fn(τ) (green, dashed-line) are given by log-normal distri-
bution (2.33) and Weibull function (2.34). Right panel: stochastic
simulation result. Each colored curve represents the population
growth curve of cells at n-th generation (red: n = 1, green: n = 2,
blue: n = 3, aqua: n = 4, purple: n = 5, yellow: n = 6, gray:
n = 7, dashed black: total).
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Although we focused on formulating a systematic approach for construction of
specific generation progression models and implementation of stochastic simula-
tions, more detailed analysis on the quantitative time-series data at the single cell
level [15] would expect to provide quantitative description for the population growth
dynamics of transient amplifying cells. Moreover, it is important to derive other
existing quantitative mathematical models from generation progression model (2.3)
such as the model proposed by Deenick et al [7], the cyton model [16], and time-
dependent Smith-Martin type model (IL-2 consumption model) [11].

Age-structured cell population dynamics have been extensively studied during
1960s to 1980s [37, 10, 2, 21, 36, 14]. Age-structured population model was firstly
proposed by McKendrick in 1926 to investigate the spread of infectious agents,
known as the McKendrick equation [27] (see also [23], a comprehensive review
paper for the brief summary of past existing study on McKendrick equations).
McKendrick equations and the Lotka renewal equation as the equivalent alterna-
tive formulation have been extensively studied in mathematical demography and
epidemiology. Several important demographic indicators such as the basic repro-
duction number R0 can be defined for the McKendrick equation. In Appendix, we
discuss the relation between a multi-group McKendrick equation system and gen-
eration progression models. Moreover, the relation between the basic reproduction
number and generation progression ratio is discussed. If the maximum number of
cell division (generation) N is infinite, then it is shown that R0 is obtained as a
limit of GPR(n) as n→ ∞.

All of quantitative mathematical models focused in the present paper do not
consider recruitment of cells. For relatively long-term dynamics of cell population
growth, cells would be recruited from a somatic stem cell population via differentiat-
ing division. Since collection of quantitative and time-series data for the population
growth of stem cells is difficult, it is practically useful if one could estimate ki-
netic parameters for the population growth model of stem cells from quantitative
time-series data of their progenitor cells. For example, estimation of growth ki-
netics parameters of a mathematical model for hematopoietic stem cell population
growth dynamics in bone marrow from some type of white blood cells in peripheral
blood or a specific tissue could be practically important. As an another example,
we have formulated a mathematical model which will be used to estimate growth
kinetic parameters of epidermal cell population under the steady state condition
of three-dimensional skin culture systems [33]. Generation progression model (2.3)
can be extended to include a class of stem cell population as a source of progenitor
population. Moreover, it is important to incorporate the effect of growth factors
in cell division and death. In this case, extension of generation progression model
(2.3) to time-dependent generation progression model is an appropriate choice to
incorporate the effect of growth factors (cf., [44]). It is important in practice to
define generation progression ratios under the influence of growth factors.

Acknowledgments. Shinji Nakaoka and Hisashi Inaba are supported by the Ai-
hara Innovative Mathematical Modelling Project, the Japan Society for the Promo-
tion of Science (JSPS) through the “Funding Program for World-Leading Innovative
R&D on Science and Technology (FIRST Program)”, initiated by the Council for
Science and Technology Policy (CSTP). Hisashi Inaba is also supported by Grant-
in-Aid for Scientific Research (C) (225401114).



380 SHINJI NAKAOKA AND HISASHI INABA

Appendix A. Relation between R0 and GPR. In order to see the relation
between R0 and GPR, we show that generation progression model (2.3) can be
formulated as a multi-group McKendrick equation system ([18], [20]). As mentioned
in Section 2, each generation is defined as a cell group which is produced through
the same number of cell divisions.

Let n(t, τ) = (n0, n1, · · ·nN )T3 denote an N + 1-dimensional vector whose j-
th element represents an age density function of transient amplifying cells of j-th
generation at time t. Let matrix Q be a (N + 1) × (N + 1) diagonal transition
matrix as:

Q(τ) =















−µ0(τ) − λ0(τ) 0 · · · 0 0
0 −µ1(τ)− λ1(τ) · · · 0 0
0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 −µN(τ) − λN (τ)















,

where λN = 0 if the N -th generation does not reproduce daughter cells anymore.
Moreover let M be a reproduction matrix as

M(τ) =















0 0 0 · · · 0 0
2λ0(τ) 0 0 · · · 0 0

0 2λ1(τ) 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2λN−1(τ) 0















.

Then corresponding to our basic model (2.3), we obtain a multistate McKendrick
equations system given by

(

∂

∂t
+

∂

∂τ

)

n(t, τ) = Q(τ)n(t, τ),

n(t, 0) =

∫ ∞

0

M(τ)n(t, τ)dτ +B0(t),

(A.1)

where n(0, τ) = 0. B0(t) := (b0(t), 0, · · · , 0)T is a given initial data describing the
reproduction law of zero-th generation.

Let U(τ, σ) denote the multistate survival matrix given by

U(τ, σ) = exp

(

−
∫ τ

σ

Q(σ)dσ

)

, (A.2)

whose diagonal element is given by

uj(τ, σ) = exp

(

−
∫ τ

σ

[µj(x) + λj(x)]dx

)

.

Define a vector B(t) := n(t, 0) = (b0(t), b1(t), · · · , bN(t))T where bj(t) (0 ≤ j ≤
N) denotes the number of newly reproduced n-th generation cells per unit time.
By the method of characteristics, we obtain from the McKendrick equation that

n(t, τ) =

{

U(τ, 0)B(t− τ), t− τ > 0,

0, τ − t > 0.
(A.3)

3 T denotes the transpose of the vector.
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By substituting (A.3) into the boundary condition of (A.1), we obtain the following
system of renewal equations with respect to B(t):

B(t) = B0(t) +

∫ t

0

Ψ(τ)B(t − τ)dτ, (A.4)

where Ψ(τ) =M(τ)U(τ, 0) is explicitly given as

Ψ(τ) =















0 0 0 · · · 0 0
2Λ1(τ)F1(τ) 0 0 · · · 0 0

0 2Λ2(τ)F2(τ) 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2ΛN−1(τ)FN−1(τ) 0















.

As is well known in the theory of Volterra integral equation, the solution of (A.4)
is given by the generation expansion:

B(t) =

∞
∑

j=0

Gj(t),

where each “generation” Gj is given by the iteration process

G0(t) = B0(t), Gj+1(t) =

∫ t

0

Ψ(τ)Gj(t− τ)dτ. (A.5)

It is easy to see that Gj is a vector whose elements are zero except for (j + 1)-th
element and the (j + 1)-th element is given by bj(t). That is, the iteration (A.5) is
no other than our generation progression model (2.3).

Then the next generation matrix (next generation operator if N is infinite) of the
multi-group model is given by

K =

∫ ∞

0

Ψ(τ)dτ =















0 0 0 · · · 0 0
GPR(1) 0 0 · · · 0 0

0 GPR(2) 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · GPR(N − 1) 0















,

and its spectral radius gives the basic reproduction number R0. Therefore, R0 = 0
if N is finite. In fact, the cell population always goes to extinction if N is finite.

Define the age distribution of each generation as

nj(t, τ) =

{

uj(τ, 0)bj(t− τ), t− τ > 0,

0, τ − t > 0.

Let us define the total age-density function by

p(t, τ) :=
∞
∑

j=0

nj(t, τ),

which is the generation expansion of the total cell population density. If N is the
maximum of parity, Gj = 0 and nj = 0 for j ≥ N + 1. Even in case that N = ∞,
the generation expansion is a finite sum as long as reproductive period of a cell is
finite.

Finally we consider the case that N = ∞. Then (A.4) becomes a `1-valued
abstract integral equation, so we need a careful treatment based on functional anal-
ysis. On the other hand, if λj = λ and µj = µ, that is, there is no difference among
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generations with respect to their reproduction and survival ability, we can reduce
the infinite-dimensional problem into a scalar problem. In fact, the total density of
cells p(t, τ) satisfies the Lotka–McKendrick system ([36]):

(

∂

∂t
+

∂

∂τ

)

p(t, τ) = −(µ(τ) + λ(τ))p(t, τ),

p(t, 0) = 2

∫ ∞

0

λ(τ)p(t, τ)dτ + b0(t),

p(0, τ) = 0.

(A.6)

Then b(t) := p(t, 0) satisfies the renewal equation

b(t) = b0(t) +

∫ t

0

ψ(τ)b(t− τ)dτ,

where

ψ(τ) := 2λ(τ) exp

(

−
∫ τ

0

[µ(x) + λ(x)]dx

)

.

Therefore the basic reproduction number of the infinite-dimensional system (A.6)
is calculated as

R0 = GPR = 2

∫ ∞

0

λ(τ) exp

(

−
∫ τ

0

[µ(x) + λ(x)]dx

)

dτ.

Moreover the Malthusian parameter r0 is given as a real root of the characteristic
equation

∫ ∞

0

e−r0τψ(τ)dτ = 1.

Then in the linear phase, we can calculate the initial growth rate of the cell popu-
lation based on the knowledge of the reproduction kernel ψ.

For more general case, if N = ∞, the basic reproduction number is the asymp-
totic per generation growth factor, so it would be obtained by limn→∞ GPR(n) if
it exists ([19]).
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