Modeling some properties of circadian rhythms

  • Received: 01 September 2012 Accepted: 29 June 2018 Published: 01 October 2013
  • MSC : Primary: 92B25, 34C15; Secondary: 68U20.

  • Mathematical models have been very useful in biological research. From theinteraction of biology and mathematics, new problems have emerged that havegenerated advances in the theory, suggested further experimental work andmotivated plausible conjectures. From our perspective, it is absolutelynecessary to incorporate modeling tools in the study of circadian rhythmsand that without a solid mathematical framework a real understanding of themwill not be possible. Our interest is to study the main process underlyingthe synchronization in the pacemaker of a circadian system: thesemechanisms should be conserved in all living beings. Indeed, from anevolutionary perspective, it seems reasonable to assume that either theyhave a common origin or that they emerge from similar selectioncircumstances. We propose a general framework to understand the emergence ofsynchronization as a robust characteristic of some cooperative systems ofnon-linear coupled oscillators. In a first approximation to the problem wevary the topology of the network and the strength of the interactions amongoscillators. In order to study the emergent dynamics, we carried out somenumerical computations. The results are consistent with experiments reportedin the literature. Finally, we proposed a theoretical framework to study thephenomenon of synchronization in the context of circadian rhythms: thedissipative synchronization of nonautonomous dynamical systems.

    Citation: Miguel Lara-Aparicio, Carolina Barriga-Montoya, Pablo Padilla-Longoria, Beatriz Fuentes-Pardo. Modeling some properties of circadian rhythms[J]. Mathematical Biosciences and Engineering, 2014, 11(2): 317-330. doi: 10.3934/mbe.2014.11.317

    Related Papers:

    [1] Jifa Jiang, Qiang Liu, Lei Niu . Theoretical investigation on models of circadian rhythms based on dimerization and proteolysis of PER and TIM. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1247-1259. doi: 10.3934/mbe.2017064
    [2] Changgui Gu, Ping Wang, Tongfeng Weng, Huijie Yang, Jos Rohling . Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus. Mathematical Biosciences and Engineering, 2019, 16(4): 1893-1913. doi: 10.3934/mbe.2019092
    [3] Ying Li, Zhao Zhao, Yuan-yuan Tan, Xue Wang . Dynamical analysis of the effects of circadian clock on the neurotransmitter dopamine. Mathematical Biosciences and Engineering, 2023, 20(9): 16663-16677. doi: 10.3934/mbe.2023742
    [4] Ryotaro Tsuneki, Shinji Doi, Junko Inoue . Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences and Engineering, 2014, 11(1): 125-138. doi: 10.3934/mbe.2014.11.125
    [5] Ya'nan Wang, Sen Liu, Haijun Jia, Xintao Deng, Chunpu Li, Aiguo Wang, Cuiwei Yang . A two-step method for paroxysmal atrial fibrillation event detection based on machine learning. Mathematical Biosciences and Engineering, 2022, 19(10): 9877-9894. doi: 10.3934/mbe.2022460
    [6] Abdon Atangana, Seda İĞRET ARAZ . Rhythmic behaviors of the human heart with piecewise derivative. Mathematical Biosciences and Engineering, 2022, 19(3): 3091-3109. doi: 10.3934/mbe.2022143
    [7] Hwayeon Ryu, Sue Ann Campbell . Stability, bifurcation and phase-locking of time-delayed excitatory-inhibitory neural networks. Mathematical Biosciences and Engineering, 2020, 17(6): 7931-7957. doi: 10.3934/mbe.2020403
    [8] Jiongxuan Zheng, Joseph D. Skufca, Erik M. Bollt . Heart rate variability as determinism with jump stochastic parameters. Mathematical Biosciences and Engineering, 2013, 10(4): 1253-1264. doi: 10.3934/mbe.2013.10.1253
    [9] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [10] Yanqin Wang, Xin Ni, Jie Yan, Ling Yang . Modeling transcriptional co-regulation of mammalian circadian clock. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1447-1462. doi: 10.3934/mbe.2017075
  • Mathematical models have been very useful in biological research. From theinteraction of biology and mathematics, new problems have emerged that havegenerated advances in the theory, suggested further experimental work andmotivated plausible conjectures. From our perspective, it is absolutelynecessary to incorporate modeling tools in the study of circadian rhythmsand that without a solid mathematical framework a real understanding of themwill not be possible. Our interest is to study the main process underlyingthe synchronization in the pacemaker of a circadian system: thesemechanisms should be conserved in all living beings. Indeed, from anevolutionary perspective, it seems reasonable to assume that either theyhave a common origin or that they emerge from similar selectioncircumstances. We propose a general framework to understand the emergence ofsynchronization as a robust characteristic of some cooperative systems ofnon-linear coupled oscillators. In a first approximation to the problem wevary the topology of the network and the strength of the interactions amongoscillators. In order to study the emergent dynamics, we carried out somenumerical computations. The results are consistent with experiments reportedin the literature. Finally, we proposed a theoretical framework to study thephenomenon of synchronization in the context of circadian rhythms: thedissipative synchronization of nonautonomous dynamical systems.


    [1] Cerebral Cortex, 7 (1997), 237-252.
    [2] Biosystems, 71 (2003), 23-28.
    [3] Neural Computation, 6 (1994), 622-641.
    [4] Sci. Math. Japon., 70 (2009), 159-174.
    [5] Sci. Math. Japon., 58 (2003), 245-254.
    [6] J. Neurosci., 18 (1998), 2200-2211.
    [7] Biol. Cybern., 95 (2006), 1-19.
    [8] Biol. Cybern., 95 (2006), 97-112.
    [9] Ann. Stat., 35 (2007), 2691-2722.
    [10] Chapman & Hall/CRC, Boca Raton, 2001.
    [11] BMC Neuroscience, 10 (2009), P110.
    [12] BioSystems, 58 (2000), 19-26.
    [13] J. Math. Biol., 42 (2001), 1-25.
    [14] Stat. Prob. Lett., 78 (2008), 2248-2257.
    [15] in Cybernetics and Systems 2010 (ed. R. Trappl), Austrian Society for Cybernetic Studies, Vienna, 2010, 169-174.
    [16] J. Stat. Plann. Infer., 136 (2006), 1638-1654.
    [17] Sci. Math. Japon., 67 (2008), 125-135.
    [18] in Cybernetics and Systems 2004 (ed. R. Trappl), Austrian Society for Cybernetic Studies, Vienna, 2004, 205-210.
    [19] Biophy. J., 4 (1964), 41-68.
    [20] J. Neurosci. Meth., 171 (2008), 288-295.
    [21] J. Comput. Neurosci., 3 (1996), 275-299.
    [22] J. Acoust. Soc. Am., 74 (1983), 493-501.
    [23] Neural Comput., 13 (2001), 1713-1720.
    [24] PLoS ONE, 2 (2007), e439.
    [25] J. Acoust. Soc. Am., 77 (1985), 1452-1464.
    [26] Neural Comput., 20 (2008), 2696-2714.
    [27] Notes taken by Charles E. Smith, Lecture Notes in Biomathematics, Vol. 14, Springer-Verlag, Berlin-New York, 1977.
    [28] in Imagination and Rigor. Essays on Eduardo R. Caianiello's Scientific Heritage (ed. S. Termini), Springer-Verlag Italia, 2006, 133-145.
    [29] in Structure: from Physics to General Systems - Festschrift Volume in Honour of E.R. Caianiello on his Seventieth Birthday (eds. M. Marinaro and G. Scarpetta), World Scientific, Singapore, 1992, 78-94.
    [30] Math. Japon., 50 (1999), 247-322.
    [31] The Journal of Neuroscience, 13 (1993), 334-350.
    [32] Biophys. J., 5 (1965), 173-194.
    [33] J. Stat. Phys., 78 (1995), 917-935.
    [34] Phys. Rev. E (3), 59 (1999), 956-969.
  • This article has been cited by:

    1. David Lloyd, Biological Timekeeping: The Business of a Blind Watchmaker, 2016, 99, 0036-8504, 113, 10.3184/003685016X14606334006008
    2. David Lloyd, Miguel A. Aon, Sonia Cortassa, 2015, Chapter 14, 978-3-319-20516-8, 367, 10.1007/978-3-319-20517-5_14
    3. David Muehsam, Carlo Ventura, Life Rhythm as a Symphony of Oscillatory Patterns: Electromagnetic Energy and Sound Vibration Modulates gene Expression for Biological Signaling and Healing, 2014, 3, 2164-957X, 40, 10.7453/gahmj.2014.008
    4. Arati Singh, Shrutika Kankariya, Atanu Kumar Pati, Arti Parganiha, Day length and evening temperature predict circannual variation in activity duration of the colony of the Indian cliff swallow,Hirundo fluvicola, 2015, 46, 0929-1016, 69, 10.1080/09291016.2014.948301
    5. Beverly Rubik, David Muehsam, Richard Hammerschlag, Shamini Jain, Biofield Science and Healing: History, Terminology, and Concepts, 2015, 4, 2164-9561, gahmj.2015.038., 10.7453/gahmj.2015.038.suppl
    6. Gonzalo Marcelo Ramírez-Ávila, Jürgen Kurths, Unraveling the primary mechanisms leading to synchronization response in dissimilar oscillators, 2016, 225, 1951-6355, 2487, 10.1140/epjst/e2016-60033-5
    7. O. Díaz-Hernández, Elizeth Ramírez-Álvarez, A. Flores-Rosas, C. I. Enriquez-Flores, M. Santillán, Pablo Padilla-Longoria, Gerardo J. Escalera Santos, Amplitude Death Induced by Intrinsic Noise in a System of Three Coupled Stochastic Brusselators, 2019, 14, 1555-1415, 10.1115/1.4042322
    8. J. E. Escalante-Martínez, J. F. Gómez-Aguilar, C. Calderón-Ramón, A. Aguilar-Meléndez, P. Padilla-Longoria, A mathematical model of circadian rhythms synchronization using fractional differential equations system of coupled van der Pol oscillators, 2018, 11, 1793-5245, 1850014, 10.1142/S1793524518500146
    9. Bing Wang, Fu Tan, Jia Zhu, Daijun Wei, A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes, 2021, 18, 1551-0018, 3718, 10.3934/mbe.2021187
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2339) PDF downloads(447) Cited by(9)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog