Effects of spatial structure and diffusion on the performances of the chemostat

  • Received: 01 November 2010 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 34D05, 34D23; Secondary: 92D25.

  • Given hydric capacity and nutrient flow of a chemostat-like system, we analyse the influence of a spatial structure on the output concentrations at steady-state. Three configurations are compared: perfectly-mixed, serial and parallel with diffusion rate. We show the existence of a threshold on the input concentration of nutrient for which the benefits of the serial and parallel configurations over the perfectly-mixed one are reversed. In addition, we show that the dependency of the output concentrations on the diffusion rate can be non-monotonic, and give precise conditions for the diffusion effect to be advantageous. The study encompasses dead-zone models.

    Citation: Ihab Haidar, Alain Rapaport, Frédéric Gérard. Effects of spatial structure and diffusion on the performances of the chemostat[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 953-971. doi: 10.3934/mbe.2011.8.953

    Related Papers:

    [1] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
    [2] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [3] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [4] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [5] Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
    [6] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [7] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [8] Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou . A competition model of the chemostat with an external inhibitor. Mathematical Biosciences and Engineering, 2006, 3(1): 111-123. doi: 10.3934/mbe.2006.3.111
    [9] Marion Weedermann . Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences and Engineering, 2012, 9(2): 445-459. doi: 10.3934/mbe.2012.9.445
    [10] Murat Arcak, Eduardo D. Sontag . A passivity-based stability criterion for a class of biochemical reaction networks. Mathematical Biosciences and Engineering, 2008, 5(1): 1-19. doi: 10.3934/mbe.2008.5.1
  • Given hydric capacity and nutrient flow of a chemostat-like system, we analyse the influence of a spatial structure on the output concentrations at steady-state. Three configurations are compared: perfectly-mixed, serial and parallel with diffusion rate. We show the existence of a threshold on the input concentration of nutrient for which the benefits of the serial and parallel configurations over the perfectly-mixed one are reversed. In addition, we show that the dependency of the output concentrations on the diffusion rate can be non-monotonic, and give precise conditions for the diffusion effect to be advantageous. The study encompasses dead-zone models.


  • This article has been cited by:

    1. M.J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi, C. Lobry, Perspectives in mathematical modelling for microbial ecology, 2016, 321, 03043800, 64, 10.1016/j.ecolmodel.2015.11.002
    2. ARNAUD DUCROT, STEN MADEC, SINGULARLY PERTURBED ELLIPTIC SYSTEM MODELING THE COMPETITIVE INTERACTIONS FOR A SINGLE RESOURCE, 2013, 23, 0218-2025, 1939, 10.1142/S021820251350022X
    3. Alain Rapaport, Ihab Haidar, Jérôme Harmand, Global dynamics of the buffered chemostat for a general class of response functions, 2015, 71, 0303-6812, 69, 10.1007/s00285-014-0814-7
    4. Terence Bayen, Alain Rapaport, Matthieu Sebbah, Minimal Time Control of the Two Tanks Gradostat Model Under a Cascade Input Constraint, 2014, 52, 0363-0129, 2568, 10.1137/130950379
    5. J.-R. de Dreuzy, A. Rapaport, T. Babey, J. Harmand, Influence of porosity structures on mixing-induced reactivity at chemical equilibrium in mobile/immobile Multi-Rate Mass Transfer (MRMT) and Multiple INteracting Continua (MINC) models, 2013, 49, 00431397, 8511, 10.1002/2013WR013808
    6. María Crespo, Alain Rapaport, Analysis and Optimization of the Chemostat Model with a Lateral Diffusive Compartment, 2020, 185, 0022-3239, 597, 10.1007/s10957-020-01665-2
    7. Gabriel Lagasquie, Sten Madec, Comparison of the global dynamics for two chemostat-like models: Random temporal variation versus spatial heterogeneity, 2020, 35, 1751570X, 100815, 10.1016/j.nahs.2019.100815
    8. A. Rapaport, I. Haidar, J. Harmand, The buffered chemostat with non-monotonic response functions, 2013, 46, 14746670, 181, 10.3182/20130904-3-FR-2041.00039
    9. Alain Rapaport, Some non-intuitive properties of simple extensions of the chemostat model, 2018, 34, 1476945X, 111, 10.1016/j.ecocom.2017.02.003
    10. Terence Bayen, Alain Rapaport, Matthieu Sebbah, 2014, Minimal time control of the two tanks gradostat model under a cascade inputs constraint, 978-3-9524269-1-3, 1256, 10.1109/ECC.2014.6862435
    11. D. Dochain, P. de Leenheer, A. Rapaport, About Transgressive Over-Yielding in the Chemostat, 2012, 45, 14746670, 653, 10.3182/20120215-3-AT-3016.00116
    12. Manel Dali-Youcef, Alain Rapaport, Tewfik Sari, Performance Study of Two Serial Interconnected Chemostats with Mortality, 2022, 84, 0092-8240, 10.1007/s11538-022-01068-6
    13. Ihab Haidar, Elie Desmond-Le Quéméner, Jean-Pierre Barbot, Jérôme Harmand, Alain Rapaport, Modeling and Optimal Control of an Electro-Fermentation Process within a Batch Culture, 2022, 10, 2227-9717, 535, 10.3390/pr10030535
    14. Tomás Caraballo, Javier López-de-la-Cruz, Alain Rapaport, Study of the dynamics of two chemostats connected by Fickian diffusion with bounded random fluctuations, 2022, 22, 0219-4937, 10.1142/S0219493722400020
    15. Manel Dali-Youcef, Tewfik Sari, The productivity of two serial chemostats, 2023, 16, 1793-5245, 10.1142/S1793524522501133
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2663) PDF downloads(507) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog