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Abstract. Given hydric capacity and nutrient flow of a chemostat-like system,
we analyse the influence of a spatial structure on the output concentrations

at steady-state. Three configurations are compared: perfectly-mixed, serial

and parallel with diffusion rate. We show the existence of a threshold on the
input concentration of nutrient for which the benefits of the serial and parallel

configurations over the perfectly-mixed one are reversed. In addition, we show

that the dependency of the output concentrations on the diffusion rate can
be non-monotonic, and give precise conditions for the diffusion effect to be

advantageous. The study encompasses dead-zone models.

1. Introduction. The chemostat is a popular apparatus, invented simultaneously
by Monod [21] and Novick & Szilard [24], for the so-called continuous culture of
micro-organisms. It has the advantage to study bacteria growth at steady state, in
contrast to batch cultivation. In the classical experiments, the medium is assumed
to be perfectly mixed, that justifies mathematical models described by systems of
ordinary differential equations [30]. The chemostat model is also used in ecology for
studying populations of micro-organisms, such as lake plankton or wetlands ecosys-
tems. In natural ecosytems, or in industrial applications that use large bioreactors,
the assumption of perfectly mixed medium is questionable. This is why spatial
considerations have been introduced in the classical model of the chemostat, such
as the gradostat model [17] that is a series of interconnected chemostats (of identi-
calvolumes). Segregated habitats are also considered in lakes, where the bottom can
be modeled as a dead zone and nutrient mixing between the two zones is achieved
by diffusion rate [22]. The consideration of dead zones is also often used in chemical
or bioprocesses modelling [16, 15, 7, 27, 26, 34, 28]. In a similar way, stagnant zones
are well-known to occur in porous media such as soils, at various extents depending
on soil structure. The effect of such dead zones on reactive and conservative mass
transport, and thus in turn on the biogeochemical cycles of elements, can also be
significant [33, 32].
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Series of chemostats, instead of single chemostat, have shown to potentially im-
prove the performances of bioprocesses, reducing the total residence time [14, 18,
11, 12, 13] or allowing species persistence [31, 25]. These properties have of course
economical impacts for the biotechnological industry, and there is a significant liter-
ature on the design of series of reactors and comparison with plug-flow reactors (that
can be seen as the limiting case of an arbitrary large number of tanks of arbitrary
small volumes) [35, 1, 23, 2, 3, 4, 5]. Sometimes a radial diffusion is also considered
in plug-flow reactors [8], but surprisingly,configurations of tanks in parallel have
been much less investigated, apart simple considerations in chemical reaction engi-
neering [16, 6]. One can argue that knowing input rates and volumes of tanks in
parallel, their dynamical characteristics can be studied separately, and there is no
need of devoting a specific study for these configurations. This is no longer the case
if one considers a passive communication between the tanks, through a membrane
for instance. In saturated soils or wetlands, a spatial structure could be simply rep-
resented by separated domains with diffusive communication. This consideration
is similar to patches models or islands models, commonly used in ecology [19, 10],
or lattice differential equations [29]. For instance, a recent investigation studies the
influence of such structures on a consumer/resource model [9]. Consumer/resource
models in ecology are similar to chemostat models, apart the source terms that are
modeled as constant intakes of nutrient, instead of dilution rates that one rather
met in liquid media.

In this paper, we propose to bring new insight on parallel configurations of
chemostats with communication, in a spirit different than the one usually taken
in bioprocesses design. One usually chooses a target for the output concentration of
substrate, and looks for minimizing the total volume, or equivalently the residence
time, among all the configurations that provide the same desired output at steady
state. Here, we fix both the total hydric volume and the input flow and study the
input-output map at steady-state, investigating the role of the spatial structure on
the performances of the system. The performance is here measured by the level of
substrate that is degraded by the system, and collected at the output. We draw
precise comparisons between the three configurations: perfectly mixed, serial and
parallel (with diffusion rate) with the same total hydric volume and flow rate. This
set of configurations is far from be exhaustive, being limited to two compartments
only, but it is a first attempt to grasp this input-output map of a structured chemo-
stat, and study how a spatial structure can modify this map, and what are the key
parameters. We believe that this study is of interest for the modelling of ecosystems
such as saturated soils for which it is not easy to know the spatial structure, and
where one has only access to input-output observations of the substrate degradation.

The paper is organized as follows. In Section 2, we present the three configura-
tions under investigation and give the equations of the models. The main part of
the paper is devoted to the analysis of the steady states, given in Section 3. The
proofs of the global stability of the equilibriums are postponed to the Appendix,
for lightening the presentation. Finally, discussion and numerical simulations are
given in Section 4.

2. The models. The flow rate is labeled Q and V is the total capacity of the
system. The three simple patterns we analyze are depicted on Figure 1:

- one single compartment of volume V
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- two compartments of volume V1, V2 such that V = V1 + V2 connected in
cascade

- two compartments of volume V1, V2 such that V = V1 + V2 in parallel with a
diffusive connection.

S     =    S   + (1−   ) S

α Q Q(1−α)

S in

αout α 21outS    =S2outS    =S

Q

Q

S in

d

+

S in

rV

(1−r)V

rV

V

Q

Q Q

Q

(1−r)V

serial connection

S

S1

2

S

S1
S2

one compartment parallel connection

Figure 1. The set of configurations under investigation.

We recall the dynamical equations of resource (nutrient) and biomass concentra-
tions, respectively denoted by Si and Xi in a compartment i of volume Vi fed
from a compartment i− with a flow rate Qi and connected by diffusion rate d to a
compartment id (see Figure 2).

Ṡi = −µ(si)

y
Xi +

Qi
Vi

(Si− − Si) +
d

Vi
(Sid − Si)

Ẋi = µ(si)Xi +
Qi
Vi

(Xi− −Xi) +
d

Vi
(Xid −Xi)

d

iQ

Q i

i id

i −

Figure 2. Possible interconnections of a compartment.

For sake of simplicity of the analytical analysis, we assume that the growth function
µ(·) is a linear function of the resource concentration:

µ(S) = mS

In Section 4, we shall consider Monod growth function and show that the qualitative
results of our study are not changed. The yield coefficient y of the bio-conversion
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is kept equal to one (this is always possible by choosing the unit measuring the
biomass). It is convenient to write dimensionless concentrations: for each concen-
tration Ci in the compartment i (Ci can denote Si or Xi), we define

ci = m
V

Q
Ci ,

and

ri =
Vi
V

.

We shall also consider that the time t is measured in units such that Q = V . Finally,
we assume that the input concentration Sin is large enough to avoid the (trivial)
wash-out equilibrium to be the only steady-state in each compartment.

Remark 1. The particular case of the parallel configuration with α = 0 corresponds
to a configuration of a perfectly mixed tank of volume (1− r)V connected to a so-
called dead-zone of volume rV (see Figure 3.

S in

S1

outS    =S2

d
rV (1−r)V

S2

Q

Q

Figure 3. The dead-zone configuration is a special case of the
parallel configuration with α = 0.

This is a way to approximate a non well-mixed tank or segregated bioreactors of total
volume V , estimating the fraction of the volume occupied by the highly agitated
area.

3. Steady-state analysis of the three configurations.

3.1. Configuration with one compartment. The dynamical equations of the
configuration with a single compartment are{

ṡ = −sx+ sin − s
ẋ = sx− x

The non-trivial equilibrium is (1, sin − 1) under the condition sin > 1. Then, one
has

s?out = 1 .

Remark 2. This is a well known property from the theory of the chemostat that
the output concentration at steady state is independent of the input concentration,
provided this latter to be large enough (i.e. sin ≥ 1).
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3.2. Serial connection of two compartments. The dynamical equations of the
model with two compartments in series (see Figure 1), assuming r to be different
to 0 and 1, are 

ṡ1 = −s1x1 +
1

r
(sin − s1)

ẋ1 = s1x1 −
1

r
x1

ṡ2 = −s2x2 +
1

1− r
(s1 − s2)

ẋ2 = s2x2 +
1

1− r
(x1 − x2)

(1)

with r = V1/V .

Proposition 1. When sin > 1/r, there exists an unique equilibrium (s?1, x
?
1, s

?
2, x

?
2)

of (1) on the positive orthant. One has necessarily s?1 = 1/r and s?2 < min(1/r, 1/(1−
r)). Furthermore, one has

s?out < 1⇐⇒ sin > 1 + 1/r .

Proof. One can readily check that there exists a non-trivial equilibrium (1/r, sin −
1/r) for the first compartment exactly when sin > 1/r. Furthermore, this equi-
librium is unique. Then, any equilibrium for the overall system (1) has to be
(s?2, sin − s?2) for the second compartment, with s?2 solution of the equation

s2(sin − s2) =
1

1− r
(1/r − s2) (2)

with s?2 < 1/r. One can easily verify that there exists a unique s?2 solution of (2) on
(0, 1/r). Graphically, s?2 is the abscissa of the intersection of the graphs (see Figure
4) of the polynomial function

φ(s2) = s2(sin − s2)

and the affine function

l(s2) =
1

1− r
(1/r − s2) .

1/r sin

1/r−s

1−r

in

s

2

2

2s*2

s  (s   −s  )2

Figure 4. Graphical determination of s?2.
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Remark that sin > 1/r implies the inequality φ(1/(1 − r)) > l(1/(1 − r)), from
which one deduces s?2 < 1/(1 − r). Finally one can compare sout = s?2 with the
value obtained in the configuration of one compartment:

s?out < 1⇐⇒ φ(1) > l(1)⇐⇒ sin > 1 + 1/r .

The global stability of the non-trivial equilibrium is proved in the Appendix
(Proposition 4).

3.3. Parallel interconnection of two compartments. The dynamical equa-
tions of the model with two compartments in parallel and diffusion (see Figure 1),
assuming r to be different to 0 and 1, are the following

ṡ1 = −s1x1 +
α

r
(sin − s1) +

d

r
(s2 − s1)

ẋ1 = s1x1 −
α

r
x1 +

d

r
(x2 − x1)

ṡ2 = −s2x2 +
1− α
1− r

(sin − s2) +
d

1− r
(s1 − s2)

ẋ2 = s2x2 −
1− α
1− r

x2 +
d

1− r
(x1 − x2)

(3)

where the output concentration sout is given by

sout = αs1 + (1− α)s2 .

The wash-out in both tanks corresponds to the trivial equilibrium (sin, 0, sin, 0),
that leads to the trivial steady-state s?out = sin. For convenience, we posit

α1 =
α

r
, α2 =

1− α
1− r

,

and assume, without any loss of generality that one has α2 ≥ α1 (if it is not the
case one can just exchange indexes 1 and 2).

Remark 3. One has necessarily α2 ≥ 1 and α1 ≤ 1.

When d = 0 (no diffusion), the equilibrium of the system can be determined
independently in the two compartments as simple chemostats. In this case, there is
an unique globally stable equilibrium (s∗1, sin − s?1, s∗2, sin − s?2) in the non-negative
orthant, where s∗i = min(αi, sin) (i = 1, 2).

When d > 0, we define the functions

φ2(s1) = s1 +
r

d
(sin − s1)(s1 − α1) ,

φ1(s2) = s2 +
1− r
d

(sin − s2)(s2 − α2) ,

and
g(s1) = φ1(φ2(s1))− s1 .

Proposition 2. When sin > 1 and d > 0, there exists a unique equilibrium
(s?1, x

?
1, s

?
2, x

?
2) of (3) in the positive orthant, where (s?1, s

?
2) is the unique solution of

the system
s?2 = φ2(s?1) and s?1 = φ1(s?2) , (4)
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on the domain (0, sin) × (0, sin), with x?i = sin − s?i (i = 1, 2). Furthermore,
s?1 = s?2 = 1 when α2 = α1 and

α1 < s?1 < s?2 < min(α2, sin) (5)

when α2 > α1.

Proof. At equilibrium, one has

r(ṡ1 + ẋ1) + (1− r)(ṡ2 + ẋ2) = 0,
r(ṡ1 + ẋ1) = 0,

which amounts to write, from equations (3)

α(sin − s?1 − x?1) + (1− α)(sin − s?2 − x?2) = 0,
α(sin − s?1 − x?1) + d(s?2 + x?2 − s?1 − x?1) = 0,

or equivalently [
α 1− α

α+ d −d

]
︸ ︷︷ ︸

M

(
sin − s?1 − x?1
sin − s?12 − x?2

)
=

(
0
0

)

One has det(M) = α2 − α− d ≤ −d < 0 and deduces the property

s?1 + x?1 = s?2 + x?2 = sin .

Consequently, an equilibrium in the positive orthant has to fulfill s?i ∈ [0, sin] for
i = 1, 2. Replacing x?i by sin − s?i in equations (3) at equilibrium, one obtains the
equations

d(s?2 − s?1) = r(sin − s?1)(s?1 − α1)
d(s?1 − s?2) = (1− r)(sin − s?2)(s?2 − α2)

(6)

which amounts to write that (s?1, s
?
2) is solution of the system (4) (see Figure 5) or

equivalently s?1 is a zero of the function g(·).

2

α 2

s*2

s*1α s in
s1

2s

1

φ

φ1

Figure 5. Graphical determination of steady states (when α1 <
α2 < sin).

When α2 = α1 = 1, one can check that s?1 = s?2 = 1 < sin is solution of (4). When
α2 > α1, one has necessarily α1 < 1 and the condition sin > 1 implies g(α1) < 0.
We distinguish now two cases:
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Case α2 < sin. If φ2(α2) ≤ sin, notice that one has φ2(α2) > α2 and then
g(α2) > 0. If φ2(α2) > sin, notice that φ2(α1) = α1 < sin and by the
Mean Value Theorem, there exists s̃2 ∈ (α1, α2) such that φ2(s̃2) = sin which
implies g(s̃2) = sin − s̃2 > 0. In both cases, one deduces by the Mean Value
Theorem the existence of s?1 ∈ (α1, α2) such that g(s?1) = 0.
Case α2 ≥ sin. One has g(sin) = 0 with

g′(sin) =
r(1− r)
d2

(α1 − sin)(α2 − sin) +
1− sin
d

< 0 .

Rolle and Mean Value Theorems allow to conclude the existence of s?1 ∈
(α1, sin) such that g(s?1) = 0.

In any case, we obtain the existence of (s?1, s
?
2) solution of (4) with s?1 belonging

to the interval (α1,min(α2, sin)), that implies s?2 = φ2(s?1) > s?1. But then s?1 =
φ1(s?2) < s?2 implies s?2 < min(α2, sin). Thus, the inequalities (5) are fulfilled.

Finally, notice that functions φ1(·), φ2(·) are both strictly concave, and steady
states (s?1, s

?
2) are intersections of G1, the graph of the function φ1(·), and G2 the

symmetric of the graph of φ2(·) with respect to the first diagonal. Consequently, if
(s?1, s

?
2) is a steady state different from (sin, sin), G1 and G2 are respectively above

and below the line segment (s?1, s
?
2) − (sin, sin). We conclude that there exists at

most one non-trivial equilibrium.

Corollary 1. When sin > 1 and d > 0, the value s?1 of the non trivial equilibrium
is the unique zero of the function g(·) on (α1,min(α2, sin)). Furthermore, one has
g′(s?1) > 0.

Proof. When α1 = α2, one has s?1 = s?2 = 1 and one can easily check

g′(s?1) =
(

1 +
r

d
(sin − 1)

)(
1 +

1− r
d

(sin − 1)

)
− 1 > 0 .

When α2 > α1, one has g(α1) < 0 and we recall from the proof of Proposition 1
that s?1 is the unique zero of g(·) on (α1,min(α2, sin)). We conclude that g is non
decreasing at s?1. Notice that φ1 and φ2 are concave functions and that

φ′1(φ2(s?1))) = 1 +
1− r
d

(sin + α2 − 2s?2) > 0

implies

g′′(s?1) = φ′′1(φ2(s?1)). [φ′2(s?1)]
2

+ φ′1(φ2(s?1)).φ′′2(s?1) < 0

We deduce that g′(s?1) cannot be equal to zero, and consequently one has g′(s?1) >
0.

The global stability of the non-trivial equilibrium is proved in the Appendix
(Proposition 5).

Proposition 2 defines properly the map d 7→ s?out = αs?1 +(1−α)s?2 for the unique
non-trivial steady-state, that we aim at studying as a function of d. Accordingly
to Proposition 2, s?out is equal to one for any value of the parameter d in the non-
generic case α2 = α1. We shall focus on the case α2 6= α1 (and without loss of
generality we shall consider α2 > α1). We start by the two extreme situations: no
diffusion and infinite diffusion.
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Lemma 3.1. For the non trivial equilibrium, one has

s?out(0) ≥ 1⇐⇒ sin ≥ s0
in =

r − α2

r(1− α)

with s0
in ∈ (1, 2).

Proof. Under the assumptions sin > 1 and α2 ≥ α1, we distinguish two cases when
d = 0.
If sin ≥ α2, one has s?1 = α1 and s?2 = α2. Then, one can write

s?out =
α2

r
+

(1− α)2

1− r
= 1 +

(α− r)2

r(1− r)
≥ 1 .

If sin < α2, on has s?1 = α1, s?2 = sin and

s?out ≥ 1⇐⇒ sin ≥
1− αα1

1− α
= s0

in .

(recall that assuming α2 ≥ α1 imposes to have α < 1, and s0
in is well defined).

Notice that the number s0
in is necessarily larger than one because α1 ≤ 1, and one

has also

α2 − s0
in =

(r − α)2

r(1− r)(1− α)
≥ 0.

Consequently one concludes that s?out ≥ 1 exactly when sin ≥ s0
in. Finally, remark

that one has

s0
in =

r − α2

r(1− α)
= 1− (α− r)2

r(r − α)
+
r − α
1− α

< 2 .

Lemma 3.2. For sin > 1, the non trivial equilibrium fulfill

lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = lim
d→+∞

s?out(d) = 1 .

Proof. For any d > 0, Proposition 2 guarantees the existence of a unique non trivial
equilibrium (s?1, s

?
2) ∈ (0, sin)× (0, sin) that is solution of (6). When d is arbitrary

large, one obtains from (6)

lim
d→+∞

s?1(d)− s?2(d) = 0 .

From equations (6), one deduces also the following equality valid for any d

r(sin − s?1)(s?1 − α1) + (1− r)(sin − s?2)(s?2 − α2) = 0 ,

that can rewritten, taking into account the equality rα1 + (1− r)α2 = 1:

(sin − s?1)(s?1 − 1) = (1− r)(s?1 − s?2)(sin + α2 − s?1 − s?2) .

Consequently, one has

lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = 1 or lim
d→+∞

s?1(d) = lim
d→+∞

s?2(d) = sin .

If α2 < sin, the property s?1 < α2 valid for any d > 0 implies that s?1 cannot
converges to sin.
If α2 ≥ sin and lim s?1 = lim s?2 = sin, there exists d such that rs?1 + (1 − r)s?2 >
(sin + 1)/2. Then, one has

g′(s?1) =
r(1− r)
d2

(sin+α1−2s?1)(sin+α2−2s?2)+
sin + 1− 2(rs?1 + (1− r)s2?)

d
< 0
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that contradicts Corollary 1. Finally, one has lim s?1 = lim s?2 = 1 and consequently
lim s?out = 1.

We present now our main result concerning properties of the map d 7→ s?out(d)
defined at the non-trivial steady-state.

Proposition 3. Assume α2 > α1.

- When sin ≥ 2, the map d 7→ s?out(d) (for the non trivial equilibrium) is de-
creasing and s?out(d) > 1 for any d ≥ 0.

- When sin < 2, the map d 7→ s?out(d) (for the non trivial equilibrium) admits a
minimum in d? < +∞, that is strictly less than one. Furthermore, one has

sin > sin =
2α1α2

α1 + α2
=⇒ d? > 0

with sin < min(2, α2).

Proof. Let differentiate with respect to d the equations (6) at steady state:

(s?2 − s?1) + d (∂ds
?
2 − ∂ds?1) = r(sin − 2s?1 + α1)︸ ︷︷ ︸

A

∂ds
?
1

(s?1 − s?2) + d (∂ds
?
1 − ∂ds?2) = (1− r)(sin − 2s?2 + α2)︸ ︷︷ ︸

B

∂ds
?
2

that can rewritten as follows[
A+ d −d
d −B − d

]
︸ ︷︷ ︸

Γ

(
∂ds

?
1

∂ds
?
2

)
= (s?2 − s?1)

(
1
1

)

Remark that one has

A+ d = dφ′2(s?1)
B + d = dφ′1(s?2)
det(Γ) = d2(1− φ′1(s?2)φ′2(s?1)) = −d2g′(s?1)

From Corollary 1, one has det(Γ) < 0 and one deduces that the derivatives ∂ds
?
1,

∂ds
?
2 are defined as follows

∂ds
?
1 = (s?2 − s?1)

−B
det(Γ)

∂ds
?
2 = (s?2 − s?1)

A

det(Γ)

(7)

Notice from inequalities (5) that we obtain B > 0 and deduce ∂ds
?
1 > 0 for any d.

With Lemma 3.2 we conclude that s?1(d) < 1 for any d.
From equations (7), we can write

∂ds
?
out=(s?2−s?1)

αB − (1− α)A

−det(Γ)
=[α1(sin − 2s?2)− α2(sin − 2s?1)]︸ ︷︷ ︸

σ

(s?2 − s?1)r(1− r)
−det(Γ)

When sin ≥ 2, one has A > 0 and then ∂ds
?
2 < 0. With Lemma 3.2 we conclude

that s?2(d) > 1 for any d. Then, one obtain the inequality

σ < (sin − 2)(α1 − α2) ≤ 0
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which proves with Lemma 3.2 that s?out is a decreasing function of d that converges
to one.

When sin < 2, we write

σ = (sin − 2)(α1 − α2) + 2(α1(1− s?2)− α2(1− s?1))

As s?1 and s?2 tend to one when d takes arbitrary large values, we conclude that
there exists d̄ < +∞ such that σ > 0 for any d > d̄ and consequently s?out is smaller
than one and increasing for d > d̄. We conclude that the map d 7→ s?out(d) admits
a minimum, say at d? < +∞, that is strictly less than one.

When d = 0, one has s?1 = α1 and s?2 = α2 if sin ≥ α2. Then, one obtains
σ = sin(α1 − α2) < 0. So the map d 7→ ∂ds

?
out(d) is decreasing at d = 0 and

consequently d? > 0.
When d = 0 with sin < α2, one has s?2 = sin and then σ = 2α1α2− sin(α1 +α2),

for which we conclude

σ < 0⇐⇒ sin >
2α1α2

α1 + α2
= sin .

Remark that this case is feasible because of the inequality 2α1α2 < min(2, α2)(α1 +
α2). We conclude that for sin larger than this last value, d? is necessarily strictly
positive.

4. Numerical computation and discussion. Propositions 1 and 3 reveal the
existence of a threshold on the value of the input concentration sin (equal to 2 for
our choice of the parameters units) that reverses the performances of the serial and
parallel configurations in terms of s?out, compared to the single tank case (for which
s?out = 1):

- for sin > 2, there exist serial configurations such that s?out < 1 for r large
enough (i.e. the first tank has to be large enough), but any parallel configu-
ration produces s?out > 1,

- for sin < 2, there exists parallel configurations such that s?out < 1, while any
serial configuration has s?out > 1. There exists another threshold s0

in ∈ (1, 2)
such that configurations with s?out < 1 require to have d large enough when
sin > s0

in (see Lemma 3.1).

Furthermore, the best performance of the parallel configuration is obtained

- for arbitrary large values of d when sin > 2 ,
- for a finite positive d? when sin ∈ (sin, 2) (where the expression of sin is given

in Proposition 3).

For the serial configuration, the graph of the function s?out is plotted as function
of r ∈ [1/sin, 1] on Figure 6 for different values of the input concentration sin.

For the parallel interconnection, we depict on Figure 7 the two kind of config-
urations that occur, depending on whether the number sin is larger than one or
not.

The values of the parameters are given on the table below

α r sin s0
in

left figure 0.6 0.9 1.14 1.5
right figure 0.1 0.9 0.21 1.09
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S  =1.5in

out

in

in

in

in

in

S  =1.75
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r

S
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Figure 6. Comparison of s?out for the serial configuration.
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S   = 1.5in

d
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0.8
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1.2

1.4

1.6

1.8
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Figure 7. Comparison of s?out for the parallel configuration (sin >
1 on the left and sin < 1 on the right) .

The analytic analysis of Section 3 has been conducted under the assumption of
the linearity of the function µ(·). It is often in microbiology that the growth rate
µ(·) presents a concavity, as described by the usual Monod (or Michaelis-Menten)
function. We have computed numerically the same curves s?out(·) than Figures 6
and 7, considering the Monod function

µ(S) =
6S

5 + S

instead of the linear function (see Figure 8).

This function has been chosen to fulfill s?out = 1 for the single tank configuration,
guaranteeing the same steady state than the linear growth for this configuration.

On Figures 9 and 10, we observe that the concavity of the growth function does
not change qualitatively the theoretical results and the existence of threshold for
sin that favourites one of the configuration.

We notice on all the figures that the yield is better for the Monod function in the
parallel configuration and worst for the serial one. This implies that the threshold
on sin, that was determined to be equal to 2 for the linear case is higher when the
growth function is concave.
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S
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linear

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0
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3.0

Figure 8. Linear and Monod growth functions.
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Figure 9. Comparison of s?out for Monod (dashed) and linear
(plain) for the serial configuration.

d
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Figure 10. Comparison of s?out for the parallel configuration
(sin > 1 on the left and sin < 1 on the right) .

Remark 4. The serial configuration for the limiting value r = 1 is equivalent to a
single tank. This explains why all the curves on Figures 6 and 9 coincide for this
value of the parameter r.

Remark 5. For the parallel configuration with α = 0.1 and r = 0.9 one has α2 = 9.
This implies that for the limiting value d = 0 the only equilibrium in the second
tank is the wash-out when sin < 9. This is not the case for the first tank but the
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flow rate αQ being small, the output s?out remains closed to sin in any case, as one
can see on Figures 7 and 10 for small values of the parameter d.

5. Conclusion. Given a flow rate and the total volume of a chemostat system, this
study shows the existence of a threshold on the value of the input concentration sin
such that above and below this threshold, serial and the parallel configurations are
respectively the best ones with respect to the criterion of minimizing the output
concentration s?out at steady state. For the parallel scheme, the best performances
are obtained for a precise value of the diffusion parameter that is proved to be pos-
itive when sin is not too small. This study concerns also dead-zone configurations,
as particular cases of the parallel configurations.

These results show that a single perfectly mixed chemostat (that does not lead
toward the wash-out of the biomass) can be replaced by a configuration of two tanks
with the same total volume (serial or parallel, depending on the value of the input
concentration) that provides a better conversion rate of the substrate at steady
state. In addition, we have proved in the Appendix that non-trivial steady states
are unique and globally exponentially stable (under the assumption that the growth
rate is linear).

Finally, this study reveals the role of the structure of the space on the perfor-
mances of simple ecosystems or bioprocesses. The possibly non-monotonic influence
of the diffusion parameter on the output steady state is not intuitive, and leave fur-
ther investigations open for understanding or taking benefit of this property for
natural ecosystems (such as saturated soils or wetlands) as well as for bioprocesses
(such as waste-water treatments). This result can be also of interest for reverse
engineering when deciding which among serial or parallel configurations is better fit
for the modeling of chemostat-like ecosystems, providing that one has an estimation
of the hydric capacity of the system.

Acknowledgments. The authors are grateful to the INRA and INRIA support
within the VITELBIO (VIRtual TELluric BIOreactors) program. The work is also
part of the PhD thesis of the first author, supervised by the two other authors.

Appendix: Global exponential stability of the non-trivial equilibrium.
First, one can easily check that the domain D = R4

+ is invariant by the dynamics
(1) and (3). We consider the 2-dimensional vector z of variables zi = sin − xi − si
(i = 1, 2) whose dynamics are respectively for the serial and parallel configurations

ż = Asz =

[
− 1
r 0

1
1−r − 1

1−r

]
z

ż = Apz =

[
−α1 − d

r
d
r

d
1−r −α2 − d

1−r

]
z

Notice that matrices As and Ap are Hurwitz :

tr(As) = −1

r
− 1

1− r
< 0 , det(As) =

1

r(1− r)
> 0

tr(Ap) = −α1 − α2 −
d

r
− d

1− r
< 0 , det(Ap) = α1α2 +

d

r(1− r)
> 0

So z converges exponentially toward 0 for both systems, which implies that dynam-
ics (1) and (3) are dissipative, in the sense that any solution of (1) or (3) in D
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converge exponentially to the compact set K = {(s1, x1, s2, x2) ∈ D s.t. x1 + s1 =
sin and x2 + s2 = sin}.

We recall a result from [20, Theorem 1.8] that shall be useful in the following.

Theorem 5.1. Let Φ be an asymptotically autonomous semi-flow with limit semi-
flow Θ, and let the orbit OΦ(τ, ξ) have compact closure. Then the ω-limit set
ωΦ(τ, ξ) is non-empty, compact, connected, invariant and chain-recurrent by the
semi-flow Θ and attracts Φ(t, τ, ξ) when t→∞.

We first give a result for the serial configuration.

Proposition 4. Under the condition sin > 1/r, any trajectory of (1) with initial
condition in D such that (s1(0), x1(0)) 6= (sin, 0) converges exponentially to the
unique non-trivial steady-state (s?1, x

?
1, s

?
2, x

?
2) given by Proposition 1.

Proof. Dynamics (1) has a cascade structure. It is straightforward to check that
the solutions of the (s1, x1) sub-system converges asymptotically towards the non-
trivial equilibrium (1/r, sin−1/r) from any initial condition away from the wash-out
equilibrium (sin, 0). From the convergence of z2 toward 0, we deduce that the s2

variable has to converge to the bounded interval [0, sin] and that its dynamics can
be written as a scalar non autonomous differential equation:

ṡ2 = −s2(sin − s2 − z2(t)) +
1

1− r
(s1(t)− s2) (8)

This last dynamics has the property to be asymptotically autonomous with the
limiting differential equation:

ṡ2 = f(s2) = −s2(sin − s2) +
1

1− r
(1/r − s2) (9)

Statement of Proposition 1 implies that this last scalar dynamics has a unique equi-
librium s?2 that belongs to [0, sin]. Furthermore, one has f(0) > 0 and f(sin) < 0.
Consequently any solution of (9) in [0, sin] converges asymptotically to s?2. Then
applying Theorem 5.1, we conclude that any bounded solution of (8) converges to
s?2. Finally any solutions of the (s2, x2) sub-system converges asymptotically to
(s?2, sin − s?2).

The Jacobian matrix of dynamics (1) at the non-trivial equilibrium (s?1, x
?
1, s

?
2, x

?
2)

is of the following form in (z1, z2, s1, s2) coordinates[
As 0
? J?

]
with J? =

[
s?1 − sin 0

1
1−r 2s?2 − 1

1−r − sin

]
Recall that As is Hurwitz. The eigenvalues of J? are −(sin − s?1), −(sin − s?2) −
(1/(1− r)− s?2) that are both negative numbers, accordingly to Proposition 1. The
exponential stability of the non-trivial equilibrium is thus proved.

We give now a result for the parallel configuration.

Proposition 5. When sin > 1 and d > 0, any trajectory of (3) with initial condition
in D such that x1(0) > 0 and x2(0) > 0 converges exponentially to the unique non-
trivial steady-state (s?1, x

?
1, s

?
2, x

?
2) given by Proposition 2.
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Proof. Considering the time vector z(·), the (s1, s2) sub-system of dynamics (3) can
be written as solution of a non-autonomous planar dynamics{

ṡ1 = s1(z1(t) + s1 − sin) + α1(sin − s1) + d
r (s2 − s1)

ṡ1 = s2(z2(t) + s2 − sin) + α2(sin − s2) + d
1−r (s1 − s2)

(10)

We know that z converges to 0 and consequently the vector S of variables s1, s2

converges to the set S = [0, sin] × [0, sin]. We study now the limiting autonomous
dynamics {

ṡ1 = (sin − s1)(α1 − s1) + d
r (s2 − s1)

ṡ2 = (sin − s2)(α2 − s2) + d
1−r (s1 − s2)

(11)

on the domain S. Let B be the boundary {s1 = sin} ∪ {s2 = sin}. On the domain
S \ B, we consider the vector σ of variables σi = log(sin − si), whose dynamics can
be written as follows

σ̇ = F (σ) =

[
−α1 + sin − eσ1 − d

r (1− eσ2−σ1)
−α2 + sin − eσ2 − d

1−r (1− eσ1−σ2)

]
(12)

One can easily compute

div(F ) = −eσ1 − eσ2 − d

r
eσ2−σ1 − d

1− r
eσ1−σ2 < 0

From Poincaré-Bendixon theorem and Dulac criterion, we conclude that bounded
trajectories of (12) cannot have limit cycle or closed path and necessarily converge
to an equilibrium point. Consequently, any trajectory of (11) in S either converges
to the rest point S? = (s?1, s

?
2) or approaches the boundary B. Notice that one has

si = sin, sj < sin ⇒ ṡi < 0 (i 6= j)

So the only possibility for approaching B is to converge to the other rest point
S0 = (sin, sin). This shows that the only non-empty, closed, connected, invariant
and chain recurrent subsets of S are the singletons {S?} and {S0}.

Applying Theorem 5.1 we conclude that any trajectory of (10), issued from initial
condition of dynamics (3) in D, converges asymptotically to S? or S0. Consider
now any initial condition with x1(0) > 0 and x2(0) > 0. We show that the solution
(s1(·), s2(·)) of (3) cannot converge to S0. If it is the case, there exists T < +∞
such that one has

s1(t) > α1 and rs1(t) + (1− r)s2(t) > 1 for any t ≥ T

under the assumption sin > 1. Let us consider the function

V (x1, x2) = min(rx1 + (1− r)x2, x1)

(see Figure 11) and v(t) = V (x1(t), x2(t)) that is positive and tends to 0 when t
tends to +∞

If x1(t) < x2(t), one has v(t) = x1(t) and

v̇ = ẋ1 > (s1(t)− α1)x1 > 0 for t ≥ T

If x1(t) > x2(t), one has v(t) = rx1(t) + (1− r)x2(t) and

v̇ = rẋ1 + (1− r)ẋ2 = r(s1 − α1)x1 + (1− r)(s2 − α2)x2

> (rs1 + (1− r)s2 − 1)x2 > 0 for t ≥ T
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x

x2

1

Figure 11. Iso-value of the V function.

We conclude that the function t 7→ v(t) is non-decreasing for t ≥ T and conse-
quently cannot converge to zero, thus a contradiction.

The Jacobian matrix of dynamics (3) at the non-trivial equilibrium (s?1, x
?
1, s

?
2, x

?
2)

is of the following form in (z1, z2, s1, s2) coordinates[
Ap 0
? J?

]
with J? =

[
−drφ

′
2(s?1) d

r

d
1−r − d

1−rφ
′
1(s?2)

]
Recall that Ap is Hurwitz. One has

det(J?) =
d2

r(1− r)
(φ′1(s?2)φ′2(s?1)− 1) and tr(J?) = −d

r
φ′2(s?1)− d

1− r
φ′1(s?2) .

The function φ1(·) being concave, one has φ1(sin) ≤ φ1(s?2) + φ′1(s?2)(sin − s?2).
Along with the inequalities sin > s?2 and φ1(sin) = sin > s?1 = φ1(s?2), one deduces
φ′1(s?2) > 0. Recall from Corollary 1 that one has g′(s?1) = φ′1(s?2)φ′2(s?1) − 1 > 0.
Then the inequality φ′2(s?1) > 0 is necessarily satisfied. Finally, we have shown
det(J?) > 0 and tr(J?) < 0, that guarantee the exponential stability of the non-
trivial equilibrium (s?1, x

?
1, s

?
2, x

?
2).

Remark 6. The wash-out equilibrium (sin, 0, sin, 0) is not necessarily hyperbolic.
This explains why we cannot use the Convergence Theorem for asymptotically au-
tonomous dynamics given in Appendix F of [30].
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