Loading [Contrib]/a11y/accessibility-menu.js

A mathematical model of the Purkinje-Muscle Junctions

  • Received: 01 October 2010 Accepted: 29 June 2018 Published: 01 August 2011
  • MSC : Primary: 35Q92; Secondary: 65M08, 92C99.

  • This paper is devoted to the construction of a mathematical model of the His-Purkinje tree and the Purkinje-Muscle Junctions (PMJ). A simple numerical scheme is proposed in order to perform some simple numerical experiments.

    Citation: Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 915-930. doi: 10.3934/mbe.2011.8.915

    Related Papers:

    [1] Hongming Liu, Yunyuan Gao, Wei Huang, Rihui Li, Michael Houston, Julia S. Benoit, Jinsook Roh, Yingchun Zhang . Inter-muscular coherence and functional coordination in the human upper extremity after stroke. Mathematical Biosciences and Engineering, 2022, 19(5): 4506-4525. doi: 10.3934/mbe.2022208
    [2] Fengjie Liu, Monan Wang, Yuzheng Ma . Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification. Mathematical Biosciences and Engineering, 2022, 19(2): 1251-1279. doi: 10.3934/mbe.2022058
    [3] Ge Zhu, Xu Zhang, Xiao Tang, Xiang Chen, Xiaoping Gao . Examining and monitoring paretic muscle changes during stroke rehabilitation using surface electromyography: A pilot study. Mathematical Biosciences and Engineering, 2020, 17(1): 216-234. doi: 10.3934/mbe.2020012
    [4] Qun Xu, Suqi Xue, Farong Gao, Qiuxuan Wu, Qizhong Zhang . Evaluation method of motor unit number index based on optimal muscle strength combination. Mathematical Biosciences and Engineering, 2023, 20(2): 3854-3872. doi: 10.3934/mbe.2023181
    [5] Christopher D. Bertram, Bernard O. Ikhimwin, Charlie Macaskill . Modeling flow in embryonic lymphatic vasculature: what is its role in valve development?. Mathematical Biosciences and Engineering, 2021, 18(2): 1406-1424. doi: 10.3934/mbe.2021073
    [6] J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau . Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy. Mathematical Biosciences and Engineering, 2020, 17(3): 2592-2615. doi: 10.3934/mbe.2020142
    [7] Baohua Hu, Yong Wang, Jingsong Mu . A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection. Mathematical Biosciences and Engineering, 2024, 21(1): 144-169. doi: 10.3934/mbe.2024007
    [8] Christoph Sadée, Eugene Kashdan . A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences and Engineering, 2016, 13(6): 1169-1183. doi: 10.3934/mbe.2016037
    [9] Xiebing Chen, Yuliang Ma, Xiaoyun Liu, Wanzeng Kong, Xugang Xi . Analysis of corticomuscular connectivity during walking using vine copula. Mathematical Biosciences and Engineering, 2021, 18(4): 4341-4357. doi: 10.3934/mbe.2021218
    [10] Xian Hua, Jing Li, Ting Wang, Junhong Wang, Shaojun Pi, Hangcheng Li, Xugang Xi . Evaluation of movement functional rehabilitation after stroke: A study via graph theory and corticomuscular coupling as potential biomarker. Mathematical Biosciences and Engineering, 2023, 20(6): 10530-10551. doi: 10.3934/mbe.2023465
  • This paper is devoted to the construction of a mathematical model of the His-Purkinje tree and the Purkinje-Muscle Junctions (PMJ). A simple numerical scheme is proposed in order to perform some simple numerical experiments.


  • This article has been cited by:

    1. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 6, 978-3-319-04800-0, 175, 10.1007/978-3-319-04801-7_6
    2. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 3, 978-3-319-04800-0, 77, 10.1007/978-3-319-04801-7_3
    3. S. Mani Aouadi, W. Mbarki, N. Zemzemi, G. Bocharov, S. Simakov, Yu. Vassilevski, V. Volpert, Stability Analysis of Decoupled Time-stepping Schemes for the Specialized Conduction System/myocardium Coupled Problem in Cardiology, 2017, 12, 1760-6101, 208, 10.1051/mmnp/201712513
    4. N. Cusimano, L. Gerardo-Giorda, A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries, 2018, 362, 00219991, 409, 10.1016/j.jcp.2018.02.034
    5. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 5, 978-3-319-04800-0, 149, 10.1007/978-3-319-04801-7_5
    6. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 7, 978-3-319-04800-0, 191, 10.1007/978-3-319-04801-7_7
    7. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 1, 978-3-319-04800-0, 1, 10.1007/978-3-319-04801-7_1
    8. Alejandro Lopez-Perez, Rafael Sebastian, Jose M Ferrero, Three-dimensional cardiac computational modelling: methods, features and applications, 2015, 14, 1475-925X, 10.1186/s12938-015-0033-5
    9. S. Mani Aouadi, W. Mbarki, N. Zemzemi, Towards the modeling of the Purkinje/myocardium coupled problem: A well-posedness analysis, 2019, 351, 03770427, 136, 10.1016/j.cam.2018.10.024
    10. M.A. Quiroz-Juárez, O. Jiménez-Ramírez, J.L. Aragón, J.L. Del Río-Correa, R. Vázquez-Medina, Periodically kicked network of RLC oscillators to produce ECG signals, 2019, 104, 00104825, 87, 10.1016/j.compbiomed.2018.05.017
    11. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 4, 978-3-319-04800-0, 123, 10.1007/978-3-319-04801-7_4
    12. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 2, 978-3-319-04800-0, 21, 10.1007/978-3-319-04801-7_2
    13. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 8, 978-3-319-04800-0, 207, 10.1007/978-3-319-04801-7_8
    14. Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 9, 978-3-319-04800-0, 249, 10.1007/978-3-319-04801-7_9
    15. Edward J. Vigmond, Bruno D. Stuyvers, Modeling our understanding of the His-Purkinje system, 2016, 120, 00796107, 179, 10.1016/j.pbiomolbio.2015.12.013
    16. Khouloud Kordoghli, Saloua Mani Aouadi, Nejib Zemzemi, Mathematical analysis of a 1D–3D coupled problem in cardiac electrophysiology modeling, 2025, 76, 0044-2275, 10.1007/s00033-024-02371-z
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2934) PDF downloads(515) Cited by(16)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog