Citation: Adnane Azzouzi, Yves Coudière, Rodolphe Turpault, Nejib Zemzemi. A mathematical model of the Purkinje-Muscle Junctions[J]. Mathematical Biosciences and Engineering, 2011, 8(4): 915-930. doi: 10.3934/mbe.2011.8.915
[1] | Hongming Liu, Yunyuan Gao, Wei Huang, Rihui Li, Michael Houston, Julia S. Benoit, Jinsook Roh, Yingchun Zhang . Inter-muscular coherence and functional coordination in the human upper extremity after stroke. Mathematical Biosciences and Engineering, 2022, 19(5): 4506-4525. doi: 10.3934/mbe.2022208 |
[2] | Fengjie Liu, Monan Wang, Yuzheng Ma . Multiscale modeling of skeletal muscle to explore its passive mechanical properties and experiments verification. Mathematical Biosciences and Engineering, 2022, 19(2): 1251-1279. doi: 10.3934/mbe.2022058 |
[3] | Ge Zhu, Xu Zhang, Xiao Tang, Xiang Chen, Xiaoping Gao . Examining and monitoring paretic muscle changes during stroke rehabilitation using surface electromyography: A pilot study. Mathematical Biosciences and Engineering, 2020, 17(1): 216-234. doi: 10.3934/mbe.2020012 |
[4] | Qun Xu, Suqi Xue, Farong Gao, Qiuxuan Wu, Qizhong Zhang . Evaluation method of motor unit number index based on optimal muscle strength combination. Mathematical Biosciences and Engineering, 2023, 20(2): 3854-3872. doi: 10.3934/mbe.2023181 |
[5] | Christopher D. Bertram, Bernard O. Ikhimwin, Charlie Macaskill . Modeling flow in embryonic lymphatic vasculature: what is its role in valve development?. Mathematical Biosciences and Engineering, 2021, 18(2): 1406-1424. doi: 10.3934/mbe.2021073 |
[6] | J. Murillo-Escobar, Y. E. Jaramillo-Munera, D. A. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau . Muscle fatigue analysis during dynamic contractions based on biomechanical features and Permutation Entropy. Mathematical Biosciences and Engineering, 2020, 17(3): 2592-2615. doi: 10.3934/mbe.2020142 |
[7] | Baohua Hu, Yong Wang, Jingsong Mu . A new fractional fuzzy dispersion entropy and its application in muscle fatigue detection. Mathematical Biosciences and Engineering, 2024, 21(1): 144-169. doi: 10.3934/mbe.2024007 |
[8] | Christoph Sadée, Eugene Kashdan . A model of thermotherapy treatment for bladder cancer. Mathematical Biosciences and Engineering, 2016, 13(6): 1169-1183. doi: 10.3934/mbe.2016037 |
[9] | Xiebing Chen, Yuliang Ma, Xiaoyun Liu, Wanzeng Kong, Xugang Xi . Analysis of corticomuscular connectivity during walking using vine copula. Mathematical Biosciences and Engineering, 2021, 18(4): 4341-4357. doi: 10.3934/mbe.2021218 |
[10] | Xian Hua, Jing Li, Ting Wang, Junhong Wang, Shaojun Pi, Hangcheng Li, Xugang Xi . Evaluation of movement functional rehabilitation after stroke: A study via graph theory and corticomuscular coupling as potential biomarker. Mathematical Biosciences and Engineering, 2023, 20(6): 10530-10551. doi: 10.3934/mbe.2023465 |
1. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 6, 978-3-319-04800-0, 175, 10.1007/978-3-319-04801-7_6 | |
2. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 3, 978-3-319-04800-0, 77, 10.1007/978-3-319-04801-7_3 | |
3. | S. Mani Aouadi, W. Mbarki, N. Zemzemi, G. Bocharov, S. Simakov, Yu. Vassilevski, V. Volpert, Stability Analysis of Decoupled Time-stepping Schemes for the Specialized Conduction System/myocardium Coupled Problem in Cardiology, 2017, 12, 1760-6101, 208, 10.1051/mmnp/201712513 | |
4. | N. Cusimano, L. Gerardo-Giorda, A space-fractional Monodomain model for cardiac electrophysiology combining anisotropy and heterogeneity on realistic geometries, 2018, 362, 00219991, 409, 10.1016/j.jcp.2018.02.034 | |
5. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 5, 978-3-319-04800-0, 149, 10.1007/978-3-319-04801-7_5 | |
6. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 7, 978-3-319-04800-0, 191, 10.1007/978-3-319-04801-7_7 | |
7. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 1, 978-3-319-04800-0, 1, 10.1007/978-3-319-04801-7_1 | |
8. | Alejandro Lopez-Perez, Rafael Sebastian, Jose M Ferrero, Three-dimensional cardiac computational modelling: methods, features and applications, 2015, 14, 1475-925X, 10.1186/s12938-015-0033-5 | |
9. | S. Mani Aouadi, W. Mbarki, N. Zemzemi, Towards the modeling of the Purkinje/myocardium coupled problem: A well-posedness analysis, 2019, 351, 03770427, 136, 10.1016/j.cam.2018.10.024 | |
10. | M.A. Quiroz-Juárez, O. Jiménez-Ramírez, J.L. Aragón, J.L. Del Río-Correa, R. Vázquez-Medina, Periodically kicked network of RLC oscillators to produce ECG signals, 2019, 104, 00104825, 87, 10.1016/j.compbiomed.2018.05.017 | |
11. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 4, 978-3-319-04800-0, 123, 10.1007/978-3-319-04801-7_4 | |
12. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 2, 978-3-319-04800-0, 21, 10.1007/978-3-319-04801-7_2 | |
13. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 8, 978-3-319-04800-0, 207, 10.1007/978-3-319-04801-7_8 | |
14. | Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi, 2014, Chapter 9, 978-3-319-04800-0, 249, 10.1007/978-3-319-04801-7_9 | |
15. | Edward J. Vigmond, Bruno D. Stuyvers, Modeling our understanding of the His-Purkinje system, 2016, 120, 00796107, 179, 10.1016/j.pbiomolbio.2015.12.013 | |
16. | Khouloud Kordoghli, Saloua Mani Aouadi, Nejib Zemzemi, Mathematical analysis of a 1D–3D coupled problem in cardiac electrophysiology modeling, 2025, 76, 0044-2275, 10.1007/s00033-024-02371-z |